
Removing Infeasible Paths in WCET Estimation:

The Counter Method

Work made during the ANR Project W-SEPT (2012-2016)

Mihail Asavoae, Rémy Boutonnet, Fabienne Carrier, Nicolas Halbwachs, Erwan Jahier, Claire

Maiza, Catherine Parent-Vigouroux, Pascal Raymond

Verimag/Grenoble-Alpes University

SYNCHRON16, dec. 2016, Bamberg

A brief introduction on WCET and IPET

WCET estimation

All executions

Tested executions

Execution time

W
or

st
es

tim
ate

d tim
e

over-approximation

Rea
l w

or
st

tim
e

W
or

st
mea

su
re

d tim
e

N
um

be
ro

fe
xe

cu
tio

ns

• Dynamic methods (test) give realistic, feasible exec. times , but are not safe

• Static methods (WCET analysis) give guaranteed upper bound to exec. time, but necessarily

over estimated

• Main sources of over-approximation:

↪→ Hardware (too complex, abstractions)

↪→ Software (infeasible paths)

A brief introduction on WCET and IPET 1/26

WCET tool organization

transfer

annot.

annot.

compilation

µ-archi
analysis

binary

C

Worst Path Search
(e.g. IPET/ILP)

CFG construction

an
aly

sisValu
e

• Value analysis:

↪→ gives info on the program semantics

↪→ in particular loop bounds

• Control Flow Graph (CFG) construction:

↪→ Basic Blocks (BB) of sequential instructions

↪→ connected by transitions (jump/sequence)

• Micro-architecture analysis:

↪→ assigns local WCET to each BB/transitions

↪→ according to a more or less precise model

↪→ N.B. given in cpu cycles

• Find the worst path in the CFG

↪→ widely used method: IPET

(Implicit Path Enumeration Technique)

↪→ based on Integer Linear Programming encoding (ILP)

A brief introduction on WCET and IPET 2/26

IPET on an example

↪→ Solution: a=g=p=1, h=e=c=k=10, d=b=f=0

with: 26+7+7+10∗(5+50+68+5) = 1320

↪→ Can be expressed with b+c ≤ n = 10
• Extra semantic info: b and c exclusive at each iteration

↪→ Solution: a=g=p=1, h=b=c=k=10, d=e=f=0

with: 26+7+7+10∗(5+72+68+5) = 1540

↪→ Objective: MAX(
∑

x∈E wxx)

↪→ Semantic constraints
h ≤ n = 10

↪→ Structural constraints

g + k = p+ h
a+ d = g = p = 1

h = e+ b = f + c = k

• ILP encoding:

≤ n

• data-flow analysis has found loop bounds
’h’ taken at most n = 10 times

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

A brief introduction on WCET and IPET 3/26

Semantic properties and WCET estimation

Idea/goal

• use state of the art static analysers to enhance state of the art WCET estimation ...

• ... implies some choices:

↪→ program analysis at the C level (that’s what program analyzers do...)

↪→ comply the IPET/ILP approach (that’s what WCET analyzers do...)

How/technique

Briefly, instrument the program with control-flow points counters:

• Static C program analyzers are likely to discover invariants relations between integer

variables (e.g. linear static analysis à la Halbwachs/Cousot)

• This kind of relations perfectly meet the IPET/ILP approach

Semantic properties and WCET estimation 4/26

Static analysis to linear constraint: example

β + γ ≤ α+ 10

0 ≤ γ ≤ α
0 ≤ β ≤ α

γ = x
ANALYSE

(PAGAI)

ADD

COUNTERS

b6

x++

T
if(c2)

F
b4

b5

b3

T
F

if(x<10)

T
while(c1) Fb1

α=β=γ=0
x = 0 b0

b2
α++

β++

γ++

while(c1)

if(c2)

b0

b1

b3

b4

b6

b5

F

T

F
T

T
F

x = 0

if(x<10)

x++

b2

From principles to practice...

• Which C program to consider ?

• How to relate (C) counters with (binary) basic blocks ?

• Integration in the WCET work-flow ?

Semantic properties and WCET estimation 5/26

Tools/Technical choices

• OTAWA+lp solve for WCET/IPET and ILP

• pagai, (Henry/Monniaux/Boutonnet) for linear analysis

• Cil/Frontc library for C program manipulation

• arm-elf-gcc
• Case studies: Tacle Bench + some others (Lustre/Scade)

Note on loop bounds

• We know that linear analysis is NOT a good method for finding (nested) loop bounds

• We generally use ORANGE (from OTAWA lib) to find loop bounds

Semantic properties and WCET estimation 6/26

Work-flow “meta” steps

original C code

Frontend
(instrumentation)

Backend
(owcet, pagai, pagai2lp)

(lp solve)

(orange and/or pragmas)

ref. ilp system

Ref. C code + counters
Ref. bin code
counters 2 BBs info

2 estimations + logs

Ref. C code

Ref. C code

bounds pragmas

bounds checking

Semantic properties and WCET estimation 7/26

Frontend (Instrumentation)

To do

• Add counters (at least !)

• ... but also get rid of unsupported constructs (owcet and/or pagai)

↪→ preprocessing directives,

↪→ multiple returns,

↪→ computed gotos, switches ...

↪→ ... and plenty of NL’s (to help line-by-line traceability) !

• and keep trace of user annotations (if any, e.g. bounds pragma)

• Notion of reference program:

↪→ free of undesired features

↪→ semantically equivalent

↪→ structurally, as close as possible

↪→ same reference for program analysis and timing analysis (via compilation)

Frontend (Instrumentation) 8/26

Running example: lcdnum.c (from Mälardalen)

#ifdef PROFILING

#include <stdio.h>

#endif

unsigned char num_to_lcd(unsigned char a) {

switch(a) {

case 0x00: return 0;

case 0x01: return 0x24;

case 0x02: return 1+4+8+16+64;

case 0x03: return 1+4+8+32+64;

case 0x04: return 2+4+8+32;

case 0x05: return 1+4+8+16+64;

case 0x06: return 1+2+8+16+32+64;

case 0x07: return 1+4+32;

case 0x08: return 0x7F;

case 0x09: return 0x0F + 32 + 64;

case 0x0A: return 0x0F + 16 + 32;

case 0x0B: return 2+8+16+32+64;

case 0x0C: return 1+2+16+64;

case 0x0D: return 4+8+16+32+64;

case 0x0E: return 1+2+8+16+64;

case 0x0F: return 1+2+8+16;

}

return 0;

}

volatile unsigned char IN = 120;

volatile unsigned char OUT;

int main(void) {

#ifdef PROFILING

int iters_i = 0, min_i = 100000, max_i = 0;

#endif

int i;

unsigned char a;

#ifdef PROFILING

iters_i = 0;

#endif

_Pragma("loopbound min 10 max 10")

for(i=0; i< 10; i++) {

#ifdef PROFILING

iters_i++;

#endif

a = IN;

if(i<5) {

a = a &0x0F;

OUT = num_to_lcd(a);

}

}

#ifdef PROFILING

if (iters_i < min_i) min_i = iters_i;

if (iters_i > max_i) max_i = iters_i;

printf("i-loop: [%d, %d]\n", min_i, max_i);

#endif

return 0;

}

Frontend (Instrumentation) 9/26

Running example (cntd)

• pre-process (cpp)

• multiple returns/switch (cil)

• get a reference C program, in two versions:

↪→ with counters (for pagai)

↪→ without counters (for ORANGE and gcc

then owcet)

• keep trace of:

↪→ counters source line

↪→ user-given bounds

Note: only main is shown, num to lcd is much

bigger due to switch/return normalization.

int main(void) {

int i ;

unsigned char a ;

unsigned char tmp ;

int __retres4 ;

//int cptr_main_1 = 0;

//int cptr_main_2 = 0;

//int cptr_main_3 = 0;

//int cptr_main_4 = 0;

//int cptr_main_5 = 0;

//cptr_main_1 ++; #line 144

i = 0;

while (i < 10) { //bound=10 #line 146

//cptr_main_2 ++; #line 147

a = (unsigned char)IN;

if (i < 5) {

//cptr_main_3 ++; #line 150

a = (unsigned char)((int)a & 15);

tmp = num_to_lcd(a);

OUT = (unsigned char volatile)tmp;

}

//cptr_main_4 ++; #line 155

i ++;

}

//cptr_main_5 ++; #158

__retres4 = 0;

#pragma RETURN_BLOCK("main")

return (__retres4);

}

Frontend (Instrumentation) 10/26

Running example (cntd)

• Reference program is compiled: lcd num.elf...

• ... and counters are associated to (binary) BB, as far as possible:

↪→ we rely on OTAWA’s dumpcfg, to be sure to agree on BB numbering/source line

↪→ as usual, rather fragile, suppose that C and bin cfgs (almost) map...

We’ll discuss later on compiler optimization

• C line / BB mapping of the example:

line(s) bloc(s) reliable counter

136,144 1 yes cptr main 1

145 1;2 NO

147,148 4 yes cptr main 2

150,151,152 5 yes cptr main 3

155 6 yes cptr main 4

158,159,160 3 yes cptr main 5

Frontend (Instrumentation) 11/26

Instrumentation: detailed work-flow and options

cdig -counters
(based on Frontc/CIL)

gcc

cpp

cptr2bb

counter/BB

ref. BIN program

(for orange) (for owcet)

ref. C+counters

options: one-return
inline

no switch

options: optim
dflt -O0

maybe others (?)

counter/line

(for pagai to ilp) (for bounds seeking) (for pagai)

(bound/line)
pragma.ffx

ref. C program

otawa’s dumpcfg

line/BB

original C code

Frontend (Instrumentation) 12/26

Bounds seeking

Sources of bounds info

• User-given bounds (e.g. Mälardalen’s pragmas)

• C-ref program analysis by Orange
• A hand-made “data-base” of standard libraries bounds, e.g.
<loop source="gcc-4.4.2/.*/arm/ieee754-sf.S" line="691" maxcount="6">

<loop source="gcc-4.4.2/.*/arm/ieee754-sf.S" line="744" maxcount="23">

Bounds seeking

• Demand-driven: call OTAWA’s mkff, to identify necessary bounds

• Customizable: use/use not pragmas or ORANGE info

allows to check whether pagai is able to find bounds on its own

Bounds seeking 13/26

Bounds seeking: detailed work-flow and options

otawa’s mkff

fixed.ffx

ref. BIN

fixffx
(seek & check bounds)

(for owcet)

option: yes/no

incomplete.ffx

ref. C

pragma.ffx arm lib.ffx

ORANGE

ORANGE.ffx

Running example:

• no arm-lib bounds (no floating points)

• user-pragma & ORANGE agree on the unique loop bound (10)

Bounds seeking 14/26

Backend: owcet + pagai + compare

Detailed work-flow and options

wcet 1 wcet 2

ref. C+counters

counter/BB

fixed.ffxref. BIN

pagai.lp

lp solvelp solve

pagai

ref. C+counters
+invariants

pagai2lp
(retrieve & translate invariants)

simple, path foc., etc.
option=stategy

otawa’s owcet

owcet.lp

Backend: owcet + pagai + compare 15/26

Running example

• raw pagai invariants:
-10+cptr_main_2 = 0

-10+cptr_main_4 = 0

5-cptr_main_3 >= 0

• translated into BB ilp constraints:

x4 main = 10; // already given/found by user/ORANGE

x6 main = 10; // structural consequence

x5 main <= 5; // new information

• Final result:
Estimation WITHOUT PAGAI: 1640

Estimation WITH PAGAI: 985

Backend: owcet + pagai + compare 16/26

Playing with options

Inlining

• deeply changes the program ...

• ... but mandatory for exploiting pagai full power:

↪→ no inter-procedural support for now...

↪→ ... then pagai is unable to relate caller counters with callee counters.

↪→ Inlining is just a “cheat” to see what an interproc-pagai would do...

Bounds seeking

• with/without ORANGE/pragmas

• allows to check the ability of pagai to find bounds

Playing with options 17/26

Optimization level

• one can try standard optimizations O1, O2, but:

↪→ traceability may be lost (too bad, but safe)

↪→ traceability may be false (unsafe !)

• However, optimized code can be 3,5,10 times ...

is it reasonable to forbit optimization ?

• The reasonable solution: traceability-aware compilation

but requires a lot of work!

• Empirical solution:

↪→ data-flow optimizations are those that strongly speed-up code ...

↪→ ... and they don’t strongly damage traceability

↪→ control-flow optimizations have less influence ...

↪→ ... so why not forbid them.

↪→ Is there some ideal, customized -O1 level, that speed up the program without

modifying the control structure ?

Playing with options 18/26

Customized O1 level

• Empirically:
-O1 -fno-auto-inc-dec -fno-cprop-registers -fno-dce -fno-defer-pop

-fno-dse -fno-guess-branch-probability -fno-if-conversion2

-fno-if-conversion -fno-inline-small-functions -fno-ipa-pure-const

-fno-ipa-reference -fno-merge-constants -fno-split-wide-types

-fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copyrename

-fno-tree-dce -fno-tree-dominator-opts -fno-tree-dse -fno-tree-fre

-fno-tree-sra -fno-tree-ter -fno-unit-at-a-time -fno-crossjumping

-fno-if-conversion -fno-if-conversion2 -fno-jump-tables -fno-loop-block

-fno-loop-interchange -fno-loop-strip-mine -fno-move-loop-invariants

-fno-reorder-blocks -fno-reorder-blocks-and-partition

-fno-reschedule-modulo-scheduled-loops -fno-unroll-loops

-fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unswitch-loops

• WARNING: not fully tested, just promising !

• Not sure at all it’s minimal: deserve more work

• And moreover, valid only for this particular version of arm-elf-gcc

Playing with options 19/26

Running example

optim cfg modif owcet +pagai why ?
-O0 no 1640 985 pagai cuts 5 heavy iterations, both find 10 total iterations
-O1 yes 780 711 pagai cuts nothing, owcet overestimate iterations (11)
-O2 yes unb. 694 pagai cuts nothing, owcet miss loop bound
-C01 no 666 426 pagai cuts 5 heavy iterations, both find 10 total iterations

A (very) preliminary conclusion:

• C-line based ffx mechanism does not support loop transformation:

↪→ here a ”while do” to ”do while” transformation leads to over-approximation (safe)

↪→ but what about more complex transformation ?

• pagai “seems” safer:

↪→ does not rely on the loop structure: only on control-points

↪→ as far as debug info is non ambiguous, the result (should be) safe...

↪→ ... but traceability may be lost.

• the -CO1 is (by far) the best solution:

↪→ does not impact the ORANGE/owcet interaction,

↪→ allows pagai to trace interesting information

Playing with options 20/26

Some experiments

Benchmarks

• Sequential TacleBench

• Ad-Hoc programs

• Lustre/SCADE programs

• Analysed function: generally main, inlined

• Expected results

↪→ WCET enhancement w.r.t OTAWA+oRange WCET

↪→ loop bounds computation

Some experiments 21/26

Observed enhancement

• Unused code

↪→ Statically computable tests

↪→ Break in an “if”, in a “while”

↪→ Why ? Cause most of TacleBench are single execution programs!

• Conflicts (i.e. exclusive branches)

↪→ without loop : incompatible conditions

↪→ in loops : only n (heavy) iterations over m (n < m)

Some experiments 22/26

Loop bounds (32 TacleBench)

• counters alone found bounds : 16

• oRange and counters are complementary : 1 (duff)

• oRange succeeds and not counters : 10 (mainly nested loops)

• oRange doesn’t survive the rewriting : 5

↪→ Not surprising: we know that pagai is not the right tool for finding bounds

Some experiments 23/26

TacleBench and Lustre/SCADE programs

Bench program imp.t general features

Dead-code

TB-MRTC adpcm-encoder 2.25% Break if while

TB-MRTC bsort100 1.97% Break if while

TB-MRTC crc 48.70 % Statically comput.

Conflicts

TB-MRTC expint 17.84% in loops

TB-MRTC lcdnum 39.10% in loops

TB-MRTC qurt 0.01% in loops

TB-Media h264dec ldecode block 68.83% in loops

DSP startup fixed 0.01% without loop

Lustre access 4cnt 0.59% without loop

Lustre ite 0.56% without loop

SCADE roll control 0.11% without loop

Some experiments 24/26

Simple Ad-Hoc programs

program imp.t general features

bounded anyway

condcache.c 25.71%

ifthen.c 8.00%

infeasible.c 5.56%

max.c 24.81%

sou.c 3.09%

no loop,

tests on integer variables and counters

generally statically computable

bounded only by oRange

detec.c 0.06% nested loops

bounded both by oRange and by Pagai alone

even.c 23.12% loop step2, test on counters

expint.c 17.84% obfuscated loop bound

hachis.c 15.98% for loop, test on index

loop1.c 20.90% for loops, unfeasible tests in loop

propofake.c 99.88% while loop, stop on counters * 1000

bubble.c 8.22% for loop, tests on integer vars in loop

Some experiments 25/26

Conclusion & Perspectives

• Semantic properties strongly influence the precision of WCET

• Semantic properties easier to extract from high level code

• Connexion with low-level is possible using debugging information

↪→ at least with -o0, -o1 (no big change in the control structure)

↪→ better compiler cooperation would be welcome

• Clever choice of counters to insert

↪→ the cost of semantic analysis highly depends on the number of counters

↪→ it’s useless to separate branches with similar durations

• Challenge for loop bounds:

↪→ current tools (e.g. ORANGE) are mainly pattern-based

↪→ program analysis is much less dependent on program structure:

find a way to deal with nested loops?

• Need for interprocedural semantic analysis (presently, often inlined)

Conclusion & Perspectives 26/26

	A brief introduction on WCET and IPET
	WCET estimation
	WCET tool organization
	IPET on an example

	Semantic properties and WCET estimation
	Idea/goal
	How/technique
	Static analysis to linear constraint: example
	From principles to practice...
	Tools/Technical choices
	Note on loop bounds
	Work-flow ``meta'' steps

	Frontend (Instrumentation)
	To do
	Frontend (Instrumentation)
	To do
	Running example: lcdnum.c (from Mälardalen)
	Running example (cntd)
	Running example (cntd)
	Instrumentation: detailed work-flow and options
	Bounds seeking
	Sources of bounds info
	Bounds seeking
	Bounds seeking: detailed work-flow and options
	Running example:

	Backend: owcet + pagai + compare
	Detailed work-flow and options
	Running example

	Playing with options
	Inlining
	Bounds seeking
	Optimization level
	Customized O1 level
	Running example
	A (very) preliminary conclusion:

	Some experiments
	Benchmarks
	Observed enhancement
	Loop bounds (32 TacleBench)
	TacleBench and Lustre/SCADE programs
	Simple Ad-Hoc programs

	Conclusion & Perspectives

