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Abstract

The motivation of this paper is to understand the effects of coupling a macroeconomic

model of inflation rate dynamics, relying on an aggregate expectation, to a heterogeneous

expectations framework. A standard macroeconomic textbook model, consisting of Okun’s

law, an expectations-augmented Phillips curve and an aggregate demand relation, is ex-

tended to allow agents the possibility of selecting between different types of forecasting

strategies to predict the future inflation rate. Rules that have produced low prediction er-

rors in the recent past are favored by agents. Here we consider trend-following and rational

expectations. Using a mixture of analytical and numerical tools we investigate the model’s

dynamics and discuss the conditions under which the extended model leads to endogenous

fluctuations in macroeconomic variables. Some preliminary results are offered for the case

in which a Taylor-like monetary policy rule is included in the model.
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1 Introduction

The aim of our paper is to explore the interplay between heterogeneous expectation

formation and macroeconomic dynamics. Our starting point is the monetary model.

Its basic ingredients are Okun’s law and the expectations-augmented Phillips curve,

used to describe the supply side of the economy, and an output growth relation

driven by changes in both nominal money growth and inflation. The novel feature

of our model is how we treat the agents’ expectation formation behavior.

To make matters as simple as possible, agents either use a sophisticated, costly

predictor or they use an easy, cheap predictor (as in Brock and Hommes 1997).

Agents select between competing forecasting strategies based on forecasting accu-

racy, measured in terms of squared forecasting errors. The aggregate expectation,

a weighted average of the two, is a factor in the expectations-augmented Phillips-

curve. Except for the interacting expectation formation process, we therefore use a

standard (textbook) macroeconomic model (Blanchard, 2005).

We have investigated the effects of heterogeneous expectations on the dynamics

of the model through a combination of mathematical analysis and numerical sim-

ulations. The results should prove useful to the increasing number of scholars who

are integrating the heterogeneous expectation framework into their own modeling
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environment1 . Related studies include Westerhoff (2006a), Lines and Westerhoff

(2006a) and Lines (2007a). In these papers, a basic goods market model is used and

agents switch between prediction strategies depending on how far the economy has

deviated from its long-run equilibrium value. For instance, there is a shift from ex-

trapolative expectations to reversion expectations as national income moves away

from its equilibrium value. Westerhoff (2006b) also uses a simple goods market

model but focuses on a situation in which predictor choice depends on an evolu-

tionary fitness measure.

Branch and McGough (2006, 2008) introduce heterogeneous expectation formation

in a New Keynesian framework. In their model, agents have to predict both the fu-

ture inflation rate and the future output level. A key goal of their papers is to derive

a setting in which the heterogeneous expectation formation is consistent with a util-

ity maximization framework. Another interesting contribution is by Franke (2007)

in which agents use different forecasting rules to predict the inflation rate. Then

the average of these inflation forecasts is used as a proxy for the current inflation

climate which, in turn, is relevant for the agents’ price and wage setting behavior,

modeled via the Phillips curve. Anufriev et al. (2008) and de Grauwe (2008) are

two recent interesting examples in which monetary policy rules are investigated in

macroeconomic models with heterogeneous expectations.

Closely related to these contributions are models in which agents may display some

kind of learning behavior (see Evans and Honkapohja 2001 for a general survey

on learning in macroeconomics). For instance, Berardi (2007) considers a model

which is populated by two different types of agents who learn through recursive

1 The most obvious applications have been to the modeling of financial markets, such as

in the works of Day and Huang (1990), Lux (1995), Brock and Hommes (1998), Chiarella,

Dieci and Gardini (2002).
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least squares techniques the parameter values of their forecasting strategies. Tuin-

stra and Wagener (2006) go one step further and study an evolutionary competi-

tion between two different estimation procedures. Overall, these models find that

bounded fluctuations in macroeconomic variables may emerge even in the presence

of learning behavior. Moreover, Marcet and Nicolini (2003) show that their model

of ”quasi-rational learning” mimics some key stylized facts observed during the

recurrent hyperinflations experienced by several countries in the 1980s quite well.

Other interesting learning models include Branch and Evans (2006) and Honkapo-

hja and Mitra (2006). Given the explanatory power of these approaches they appear

quite relevant for policy evaluation.

The complicated dynamics of our models are obviously due to the nonlinearities

in the expectation framework. There are, of course, a number of other interesting

macroeconomic models which use other mechanism to generate endogenous dy-

namics, e.g., Day (1999), Rosser (2000), Lines (2005), Puu and Sushko (2006). In

our case, fluctuating long run dynamics are due to a permanent evolutionary compe-

tition between the prediction rules. For example, if agents have the choice between

rational and extrapolative expectations, the dynamics of the model may be sketched

as follows. Suppose that a large fraction of the agents rely on the rational predictor.

Then the dynamics is stable and a convergence towards a “normal” steady state

sets in. However, the system does not necessarily settle down on this fixed point.

For instance, close to the steady state the forecasting accuracies of both predic-

tors become similar. If a sufficient number of agents switch to the extrapolation

predictor, the steady state becomes unstable and oscillation in key macroeconomic

variables are triggered. Rational expectations may gain in popularity again when

the prediction errors of extrapolative expectations become strong. This sequence

repeats itself, with the dynamics further complicated by macroeconomic feedback
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processes (which will be explained below).

In Section 2 we present the full model. In Section 3 we investigate dynamics in the

case of rational vs. extrapolative predictors. Conclusions are offered in Section 4.

In the Mathematical Appendix we derive the critical values of parameters for loss

of local stability of the unique fixed point for both pairs of expectations.

2 The model

The basic model we use to describe inflation rate dynamics combines three macroe-

conomic relations: Okun’s law, an expectations-augmented Phillips curve and an

aggregate demand relation. These quite standard macroeconomic tools are dis-

cussed in detail in Blanchard (2005), for example. The novel feature of our model is

the introduction of a framework for exploring the effects of various expectation op-

erators on the dynamics of the inflation rate. We first derive the results of assuming

a single expectation strategy. Then, following Brock and Hommes (1997, 1998),

we assume that the agents have the choice between different types of forecasting

rules and select between them depending on their predictive capacity, which plays

the role of an evolutionary fitness measure.

2.1 The macroeconomy

Consider Okun’s law, which states that changes in unemployment are related to

output growth. We denote byut the unemployment rate, bygt the output growth

rate and bygn the so-called normal output growth rate, and Okun’s law may be

formalized as

ut − ut−1 = −β(gt − gn), β > 0. (1)
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Accordingly, output growth above (below) normal leads to a decrease (increase)

in the unemployment rate. To maintain a stable unemployment rate, output growth

obviously must be equal to the normal output growth. Recall that the empirical

support for Okun’s law is very solid. Estimates of the normal output growth rate

are generally around 3 percent for the U.S. economy.

There are currently several versions of the Phillips curve. Here we make use of the

expectations-augmented Phillips curve in which inflation is conditional on expected

inflation and the deviation of the unemployment rate from its natural rate. Hence,

πt = πe
t − α(ut − un), α > 0, (2)

whereun is the normal rate of unemployment. The time index ofπe
t , the aggregate

expected inflation rate, refers to the period for which the expectation is formed.

The agents’ information set includes the past values of relevant variables up to time

periodt− 1.

The economic motivation of (2) is as follows. If agents expect a higher inflation,

then workers demand (and obtain) higher wages. Since the firms use a mark up

pricing rule, they consequently increase prices and so the inflation rate increases.

In addition, if the unemployment rate decreases, workers have a stronger bargaining

power and are able to negotiate higher wages. Again, firms do mark up pricing and

the inflation rate rises.

The aggregate demand is defined by a simple, linear relation in which output growth

adjusts to the difference between nominal money growth and the inflation rate

gt = m− πt. (3)

The nominal money growth ratem is constant over time. Recall that (3) is consis-
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tent with (i.e. may be derived from) the basic IS-LM framework. For instance, an

increase in the real money stock leads to a decrease in the interest rate. As a result,

the demand for goods and thus also output increases.

From (1)-(3) we can derive

πt =
αβ(m− gn)

1 + αβ
+

πt−1

1 + αβ
+

πe
t − πe

t−1

1 + αβ
, (4)

i.e. the inflation rate in periodt depends on the inflation rate in periodt− 1 and on

the expected inflation rates for periodst andt− 1 2 .

The equilibrium inflation rate value,̄π, in terms of expectations is

π̄ = (m− gn) + αβ(πe
t − πe

t−1). (5)

Once there are no further changes in expectations we have

π̄ = m− gn = πn, (6)

that is, the equilibrium inflation rate is given by the distance between money and

output growth. The particular forms of strategies used in the following always imply

that agents commit no forecasting errors in equilibrium (in equilibrium all agents

predictπn). If expectations are eliminated, the model (4) is characterized by mono-

tonic convergence to equilibrium. Otherwise, the stability ofπn, and the existence

and types of other limit sets, depend on the expectations set-up as we discuss in

what follows.

2 To see this solve (2) forut. Doing the same forut−1, we can calculate the difference

ut−ut−1 and substitute back into (1). Solving this expression forπt and making use of (3)

gives (4).
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2.2 Expectation formation

We first investigate the dynamics of the inflation rate equation (4) with single strate-

gies, all of which are linear. Then the coupling of homogeneous expectations to the

macro model through (4) results in linear models whose dynamics are readily de-

termined.

In principle, agents may make efficient use of the available information and form

rational expectations,

πR
t = πt (7)

and the aggregate expectation is always realized. Model (4) then assignsπt = πn

for all t, because the inflation rate is perfectly predicted and the inflation rate never

deviates from its normal rate. One may argue that the rational expectations operator

has a super-stabilizing effect on the inflation rate equilibrium.

Agents may also choose to base their expectations on a much smaller part of the

information. Here we consider that agents may decide to follow the trend of the

very recent past, an inefficient but simple, and one could argue, common practice.

If all agents are extrapolators the aggregate expectation is

πE
t = πt−1 + γ(πt−1 − πt−2). (8)

Agents include a term with the direction of change of the inflation rate, withγ in-

dicating how strong the agents extrapolate past inflation trends into the future. This

behavioral parameter indicates the agents’ level of optimism/pessimism, and plays

an important role in the stability of the equilibrium rate. Ifγ is low the equilibrium

is stable, but the normal inflation rate loses stability atγc = 0.5(1 + αβ) as the

modulus of a complex, conjugate pair of eigenvalues is one. Forγ > γc, πn is no

longer an attractor. The trend-following strategy is thus potentially destabilizing.
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2.3 Empirical support

In this section we present empirical evidence that views about the future inflation

rate differ significantly among agents. For instance, analyzing survey data on infla-

tion expectations, Mankiw et al. (2003) find that the interquartile range of inflation

expectations for 2003 among economists ranges from 1.5 to 2.5 percent and that

among the general public, the interquartile range of expected inflation ranges be-

tween 0 and 5 percent. Also Carroll (2003) and Pesaran and Weale (2006) report

similar evidence and conclude that inflation expectations are not always formed in

a fully rational way. A central issue then is how agents form inflation expectations

in real economies and how we should model this. There exists a good deal of em-

pirical research to guide us in this effort, we mention some of the most relevant

below.

Experiments conducted by Simon (1955), Kahneman, Slovic and Tversky (1986)

and Smith (1991) suggest that agents should be regarded as boundedly rational.

Although people lack the cognitive capabilities to derive fully optimal actions, they

should not be regarded as irrational. In fact, people strive to do the right thing. It

may in many situations be more accurate to describe their behavior as rule-governed

behavior. This means that people rely on a limited number of heuristic principles

which have proven to be useful in the past.

When it comes to the formation of expectations, Heemeijer et al. (2009) find that

agents tend to use simple linear forecasting rules based on recent information to

form predictions. In particular, agents use extrapolative expectation formation rules

which are common in so-called positive expectations feedback systems. Moreover,

in such contexts these expectations may become self-confirming. One should note
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that in macroeconomic models, such as the one we develop in this paper, a positive

expectations feedback may be inherent. For instance, if the majority of agents ex-

pects the inflation rate to increase, then, according to the expectations-augmented

Phillips curve, it will increase (everything else being equal). Further support on

the use of extrapolative expectations in the case of positive feedback systems is

provided by Hommes et al. (2005) and Hommes et al. (2008).

In another interesting empirical work, Branch (2004) studies which forecast rules

agents apply to predict the inflation rate. From survey data on inflation expectations,

he concludes that agents rely on rules such as VAR forecasts, adaptive expectations

or naive expectations. The VAR predictor, which takes past macroeconomic real-

izations such as the inflation rate, the unemployment rate, the interest rate or the

money growth rate into account, is interpreted by Branch as a boundedly rational

predictor “in the spirit” of rational expectations. Moreover - and this is quite rele-

vant for our paper - he also finds that agents do not blindly follow one of these rules

but dynamically select predictor functions. The proportion of agents that use each

predictor varies inversely with the predictors mean squared prediction error. Hence,

agents display some kind of learning behavior in the sense that they tend to select

prediction rules that did well in the past. Depending on the setting, agents may

switch quite quickly between strategies. Branch also finds evidence for a predispo-

sition effect. Agents switch between predictors as the forecast accuracy warrants,

however, there is inertia to these switches. This is because forecast errors must pass

some threshold before agents abandon their previously selected predictor. In his

setting, there is a predisposition for the more sophisticated VAR method. Further

evidence for dynamic predictor selection and heterogeneous expectation formation

in different environments is provided by Baak (1999), Chavas (2000), Westerhoff

and Reitz (2003), Alfarano et al. (2005), Boswijk et al. (2007) and Branch (2007).
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2.4 Heterogeneous expectation framework

Recall that aggregate inflation expectations enter the macroeconomic model via the

expectations-augmented Phillips curve. In the case of co-existing strategies, the ag-

gregate expectation for the economy is a weighted average over the expectation for

each type of strategy. Note that we include heterogeneous expectations in form of

a weighted average of individual expectations into a macroeconomic model which

has no explicit microfoundation. However, Anufriev et al. (2008) argue that for a

linear macroeconomic model such as theirs, this is the most natural way to proceed.

Also Lines and Westerhoff (2006a) and De Grauwe (2008), among others, follow

this approach.

Our focus is on macroeconomies in which a stabilizing strategy (rational expecta-

tions) and a potentially destabilizing operator (extrapolative expectations) co-exist.

The rational expectations predictor requires an information set substantially richer

than that required by the extrapolative predictor and we assume that there is an as-

sociated cost. However, the cost parameter may include not only the actual cost of

the strategy, in terms of collecting information, calculating, etc. but also a predis-

position effect, in terms of reluctance to adopt a more difficult algorithm (see, for

example, Branch 2004).

Then, with rational expectations (R) against extrapolative trend-following (E), the

aggregate inflation rate is a weighted linear combination of the two:

πe
t = wE

t πE
t + wR

t πR
t , (9)

where the relative weights of extrapolative and rational are denoted bywE
t andwR

t ,

respectively. Agents are not constrained to a certain rule and compare their relative

prediction performance. We assume that the agents prefer tools with a high fore-
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casting accuracy and rely on squared prediction errors as a (publicly observable)

fitness measure. The attractiveness of the strategies are defined as follows

aE
t = −(πE

t−1 − πt−1)
2, aR

t = −(πR
t−1 − πt−1)

2 − κ, κ ≥ 0 (10)

whereκ represents the costs of forming rational expectations.

As in Brock and Hommes (1997, 1998), we update the fractions of agents using one

or the other predictor via a discrete-choice model (Manski and McFadden, 1981).

The weight of the extrapolative predictor is

wE
t =

exp (λaE
t )

exp (λaE
t ) + exp (λaR

t )
, or wE

t =
1

1 + exp [λ(aR
t − aE

t )]
. (11)

andwR
t = 1 − wE

t . The parameterλ ≥ 0 measures how sensitive agents are to

selecting the most attractive predictor. For instance, ifλ = 0, agents are unable to

discriminate between the two predictors so thatw1
t = w2

t = 0.5. On the other hand,

in the limit for λ → +∞, all agents select the best performing predictor.

3 Rational versus extrapolative expectations

We are now ready to explore interactions between the sophisticated rational expec-

tations (or perfect foresight) predictor and the extrapolative trend-following pre-

dictor. We start with a study of the local dynamics using analytical methods, and

then turn to numerical simulations for a deeper understanding of global dynam-

ics and the motion on non-point attractors. Finally, we investigate the impact of a

Taylor-like monetary policy rule on the dynamics of our model.
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3.1 Analytical results

Coupling the heterogenous expectation framework (7)-(11) with (4) we have:

πt = f(πt−1, πt−2, πt−3, πt−4), (12)

giving a fourth-order nonlinear law of motion, with a unique equilibrium inflation

rateπn = m− gn. The time evolution of the unemployment rate and output growth

may be expressed, respectively, asut = h(πt, πt−1, πt−2), gt = k(πt). Once the

path of the inflation rate is determined, the evolution of the other two variables are

determined and the steady state values of the unemployment rate and the output

growth rate are equal to their normal values.

Analysis based on the Jacobian of the first-order system in current and lagged val-

ues ofπ, confirms a unique loss of local stability ofπn.

Proposition 3.1 The inflation rate equation (4) with heterogeneous expectations

framework (7)-(11), extrapolative versus rational expectations predictors, has a

unique fixed pointπn, which loses stability through a Neimark-Sacker (NS) bifur-

cation at critical value

γc =
αβ + µ

2µ
, µ =

1

1 + e−λκ
(13)

(see Mathematical Appendix).

Note that Proposition 3.1 implies that if either information costs(κ) or intensity of

choice(λ) are very high, the critical value for the extrapolation reaction parameter

approachesγc = 0.5(1+αβ). On the other hand, if either(κ) or (λ) are near 0, the

critical value is larger, approachingγc = 0.5 + αβ. Then the equilibrium inflation

rateπn is stable for all reaction parameter valuesγ < 0.5(1 + αβ) and unstable for
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γ > 0.5 + αβ.

Moreover, extensive numerical studies of the model suggest the following. The lo-

cal NS bifurcation is subcritical, so that in a (sufficiently) small left neighborhood

of γc, the curves bifurcating from (and enclosing)πn are repelling. This implies

the “corridor stability” ofπn, that is, the basin of attraction of the equilibrium de-

creases until, at the critical parameter value, it disappears. Yet, the global dynam-

ical behavior over much of the relevant parameter space is motion on, or close to,

stable invariant curves. There is also a part of the parameter space characterized

by the coexistence of these limit sets and the stableπn. These properties suggest

that the subcritical NS is accompanied by a two-parameter bifurcation known as a

Chenciner (or crater) bifurcation (see Agliari 2006, Agliari et al. 2006, Gauners-

dorfer et al. 2008 for economic applications and references). We turn to a study

these dynamical aspects through numerical and graphical methods.

3.2 Parameter sensitivity

There are many parameters and we proceed by fixing a basic set of parameter val-

ues. For the parameters belonging to the macroeconomic textbook part of the model

we setgn = 0.02, un = 0.05, m = 0.05, α = 1, β = 0.35. The normal output

growth rate is 2 percent, the normal rate of unemployment is 5 percent and the nom-

inal money growth is 5 percent. Note that the slope parameters of the Phillips curve

and Okun’s law are also in line with empirical observations (Blanchard, 2005).

The heterogeneous expectations framework introduces a behavioral parameterλ,

implying the propensity to switch between predictors, and a costκ for the sophisti-

cated predictor which is also in part behavioral. For the heterogeneous expectations
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framework we typically setκ = 0.0001, so that the actual and psychological costs

of using rational expectations have the same weight as a 1 percent error in the at-

tractiveness function (10).

The sensitivity parameter in the weight function (11) is set atλ = 12500. To test the

effect of this value on switching, we compare proportions of agents selecting one or

the other predictor in given situations. Suppose that the prediction error of a strategy

A is 1% less than the prediction error of a strategy B and that strategy B makes an

error of 0.01. Moreover, letκ = 0, so that we see only the influence of different

predictive capacity. For the basic set of parameter values, the 1% difference leads

to a weight of 50.6% for strategy A while if there were no difference in errors it

would be 50%. Hence, a 1% prediction improvement leads to a 0.6% switch from

predictor B to predictor A.

In Figure 1, inflation rate limit sets are represented over parameter space(κ, γ) with

the basic set of values for other parameters,κ ∈ (0, 0.0002), γ ∈ (0.65, 1.25). 3

That is, costs vary from non-existent to twice the assumed value, extrapolators pre-

dict from 65-125% of last period’s trend will continue. Initial conditions are set at

some distance from equilibrium (0, 0.01, 0, 0.01) to avoid seeing only local dynam-

ics.

PLACE FIGURE 1 ABOUT HERE

3 All figures are produced with the open-source software iDMC, available (along with

model systems used in the paper) at http://code.google.com/p/idmc/.
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The figure (often called a double bifurcation diagram) is essentially a cycle search

over parameter space. For every coordinate couple of parameter values the algo-

rithm follows a trajectory and designates with a color (gray scale) the long-run

dynamics associated with the given parameter value couple (using the basic set of

other parameter values, and from the given initial point). If asymptotic dynamics

are a stable fixed point, the coordinate is colored red (gray area on far left). The

other colored (gray) areas represent parameter combinations for which stable cy-

cles composed of the indicated number of periodic points exist. The white area

represents combinations for which the dynamics are either periodic but of period

higher than the maximum cycle sought (12 in the simulations here and in the fol-

lowing), quasiperiodic (and like periodic cycles the sequences lie on an invariant

curve), or chaotic (and points lie on a strange attractor).

The black curve superposed on Figure 1 represents the NS bifurcation critical val-

ues (13) in Proposition 3.1. The abscissa represents null costs and the equilibrium is

stable for values up to the higher boundγ < 0.85, while it is evident that the higher

are costs, the closer the critical values come to the lower boundγ = 0.675. That is,

the more agents have to pay to form a sophisticated expectation, the smaller is the

range for fixed point stability. In the area to the left of the NS curve and to the right

of the area of fixed points, the stableπn co-exists with other attractors and initial

conditions determine to which limit set a trajectory is attracted. This is typical of

subcritical NS bifurcations accompanied by a Chenciner bifurcation.

We were not able to derive formally the critical curve of the Chenciner bifurcation

(call it Γ), which signals the onset of multiple stable attractors, but conjecture the

following. The curveΓ intersects the critical curve of the NS bifurcation atκ = 0

suggesting there is no multi-stability for the case of zero cost rational expectations.

ThenΓ slopes to the left following the curve representing loss of fixed point stabil-
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ity until aroundκ = 0.0001. It is likely that for higher costsΓ smoothly converges

to the the lower critical bound ofγ = 0.675 (more on this point in Section 3.4).

In the area of multi-stability between the NS critical curve andΓ there is a role for

economic policy makers to push the inflation rate from the basin of attraction of a

fluctuating limit set into the basin of the equilibrium rate.

Consider also the single bifurcation diagrams (with Lyapunov exponents below)

in Figure 2, settingκ = 0.0001. The choice of a predictor making use of rational

expectations is insufficient to counterbalance the destabilizing effect of the extrap-

olative predictor onπn. Over most of the state space trajectories are attracted to a

different limit set, even ifπn is locally stable untilγc ≈ 0.725. In the next section

we describe the dynamics of the inflation rate on attractors in the middle range of

the extrapolation coefficient.

PLACE FIGURE 2 ABOUT HERE

3.3 Economic dynamics

The evolution of the first two Lyapunov exponents, plotted in Figure 2 left (bottom),

suggest that the attractor type jumps from the equilibrium to a chaotic attractor

at aroundγ = 0.7. A closer look reveals the existence of the period 7 attractor

(observable in Figure 1 atκ = 0.0001) as well as a tiny interval for quasiperiodic

attractors before the interval of strange attractors. In Figure 3 top left, are plots
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of the fixed point, a quasiperiodic attractor and a chaotic attractor (γ = 0.675,

0.7, 0.725, respectively) in the state space(πt−1, πt). Figure 3 bottom left plots the

fraction of agents using extrapolationwE
t , which depends on prediction accuracy in

the previous period, against the inflation rateπt−1. For the fixed point, represented

in this plot atπt−1 = 0.3, wE
t ≈ 78%, both predictors are perfect and RE have

costs. The quasiperiodic motion is seen as a torus in the state space (Figure 3 top

left), as a U-shaped curve in the(πt−1, w
E
t ) plane (Figure 3 bottom left).

An interval of the time evolution of the inflation rate on the quasiperiodic attractor

is represented in Figure 3 top right, the evolution of the trend-following fraction

in Figure 3 bottom right. Traces of the nearby period 7 cycle are observable in

the inflation rate. We use this quasiperiodic attractor to describe the interaction

between macroeconomic mechanisms and the expectations framework because the

motion is fairly regular and the influence of periodicity 7 is evident over chaotic

attractors as well. Note that the latter implies that there are only a few (3-4) steps

from trough to peak (and vice versa). Trend followers obviously have least errors

when there is a stable upward or downward movement with slopes corresponding

to their extrapolation parameter. Errors of trend-followers increase at the turning

point, when the trend stops, and after the turning point, when it turns around.

PLACE FIGURE 3 ABOUT HERE

From an economic point of view, the model works roughly as follows. Suppose that
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the economy experiences a multi-period increase in the inflation rate and extrapo-

lators are predicting fairly well. Since RE are costly, extrapolators gain in promi-

nence, driving the inflation rate even higher. But inflation rates far from equilibrium

trigger macroeconomic mechanisms which tend to dampen deviations. As the in-

flation rate increases, real money growth declines which, in turn, reduces aggregate

demand (via the aggregate demand relation). The reduction in output increases the

unemployment rate (via Okun’s law). Since this decreases the wage pressure infla-

tion declines (via the Phillips curve). The inflation rate experiences a turn around

due to these stabilizing macroeconomic forces and the remaining agents using ra-

tional expectations.

After the turning point extrapolators commit significant forecasting errors and, con-

sequently, there is substantial switching to rational expectations. Given their (super)

stabilizing impact, the inflation rate then moves toward its normal value. However,

during the downward movement of the inflation rate there are still trend-followers

who give momentum to the fall andπ overshootsπn. A new temporary stabiliz-

ing phase is set in motion at the next lower turning around. Some agents switch to

extrapolation in the slow down, but back to rational expectations after the turning

point. The pattern repeats itself in a quasiperiodic fashion.

In the sample chaotic attractor the interactions are much less regular, although for

this nearby (in parameter space) value, trajectories remain close to the invariant

curve of the quasiperiodic attractor in the state space (left). Switching is more ex-

aggerated (right) and less regular. For extrapolation coefficients in the zone with

intermittency (discussed in detail in Section 3.4), most points are concentrated near

(πn, w
E(πn)) as trajectories spend more time at the fixed point. For these values of

γ, trend-followers are more accurate predictors and once past turning points, fewer

agents switch to rational expectations than for values around the quasiperiodic at-
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tractor. As the extrapolation coefficient is increased the amplitude of fluctuation

increases at a slow pace. Even at extreme values, e.g.γ = 4, the inflation rate

remains within a finite and economically meaningful interval.

We can now summarize the overall effect of introducing heterogeneity in expec-

tations on the long-run behavior of the model. Recall that in the linear single ex-

pectation models, trend-following may lead to a loss of equilibrium inflation rate

stability, while rational expectations kept the economy always atπn. Coupling the

macroeconomy to the heterogeneous expectation framework with both predictors

leads to the following dynamics.

(i) The super-stabilizing rational expectations predictor is not always able to over-

come the destabilizing effect of trend-followers onπn.

(ii) It is able, in conjunction with the stabilizing forces of the macroeconomy, to

overcome the potential global instability of the homogeneous extrapolation model

and guarantee the existence of an attractor, albeit typically chaotic, over the relevant

range of the extrapolation coefficient.

3.4 Intermittency

As observable in Figure 2, the interval for which trend-followers predict the current

trend will be amplified (γ > 1) is characterized by putative chaotic attractors and

punctuated by what appear to be returns to fixed point stability. From other simula-

tions it appears that the left limit of the interval moves further left (to values smaller

than one) for more reactive switching between predictors (largerλ). A similar ob-

servation is evident in the upper right part of Figure 1 for the cost parameterκ.

The odd dynamical behavior of the attractors associated with this seeming return to
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fixed point stability is referred to as intermittency. In the present context, intermit-

tency refers to the fact that the inflation rate is subject to infrequent bouts of large

variations in which the trajectory spirals out away from the unstable (saddle-focus)

equilibrium until the trajectory suddenly returns to a vicinity of the equilibrium.

There it remains for long intervals but, eventually, it will follow a new round of

moving away. Economically, this corresponds to a regime where the inflation rate

remains quite close to its normal value for an extended period of time but then, with

no change in the macroeconomic environment, suddenly becomes more volatile.

These bouts of fluctuations continue for as long as one cares to simulate, a behavior

that can be very confusing to the observer. All numerical methods for characteriz-

ing attractors depend on the given time interval. Any bifurcation diagram represents

the situation after the selected number of transients and over the selected number

of iterations. In Figure 1, for example, after 10000 transients the algorithm assigns

a fixed point to parameter pairs that are most likely chaotic attractors with intermit-

tency. Lyapunov exponents are time averages and unfortunately do not converge

for trajectories with this kind of dynamics (note the exponents’ behavior in Figure

2 bottom left, for higher values ofγ).

We conclude that if extrapolators believe that the current trend will continue with

much the same or even more intensity, there will be long periods of inflation rates

near normal, interrupted occasionally by a relatively fast flight of increasing am-

plitude cycles until the economy returns to near normal inflation rates and the se-

quence begins anew. Dynamics similar to these were found by Brock and Hommes

(1997), in a different context, with rational and naive expectations.
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3.5 A monetary rule

It might be argued that the equilibrium point instability introduced by the trend-

following expectation would be countered by a more flexible monetary rule. As a

first attempt to explore this possibility we consider a modified Taylor rule of the

following form:

mt+1 = mn + aπ(π∗ − πt) + ag(gn − gt) (14)

wheremn is the money growth target rather than a constantm used in equation

(3); π∗ is desired rate of inflation;aπ andag are parameters indicating reaction to

the current distance of inflation rate from its desired rate and current output growth

from its normal rate, respectively. The rule suggests that if inflation is above (below)

target or output growth rate is above (below) normal, the relevant authority reacts

with a tight (easy) monetary policy.

Our preliminary results are based only on numerical simulations and the follow-

ing interpretations are to be taken as conjectures. We again setmn = 0.05 and

γ = 0.7, and letπ∗ = πn = 0.03. In figure 4 are the double bifurcation dia-

grams over the monetary authorities reaction parameters,ag againstaπ. On the left

simulations start from the usual initial conditions at some distance from the equi-

librium inflation rate, on the right initial conditions are very near equilibrium. An

approximation of the NS bifurcation critical curve is then given by the curve of

fixed point stability loss in Figure 4 right. The Chenciner bifurcation critical curve

is approximated by the curve of fixed point stability loss in Figure 4 left. The area

between these 2 curves is characterized by multi-stability, implying again a role for

economic policy.
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PLACE FIGURE 4 ABOUT HERE

Overall, the output gap reaction part of the Taylor rule seems to be more effective

in stabilizing the equilibrium inflation rate - parameter combinations in the upper

right part of the bifurcation diagrams in Figure 4 are characterized by fixed point

dynamics. If monetary authorities react to the inflation gap they are likely to create

a persistent fluctuation in inflation rates. Worse still is settingaπ > 1, which leads

to a total loss of stability for the system unlessag is simultaneously set high.

This situation contrasts with that of the typical Taylor rule, for which it is often

said that one should setaπ > 1. But in the original framework an increase in the

inflation rate of, say 1%, is accompanied by an increase of the nominal interest rate

by more than 1%, implying also a positive increase of the real interest rate which

may, in turn, dampen the economy. Ifaπ < 1 the nominal interest rate increases but

the real interest rate decreases, and there is no stabilizing effect.

The model studied in this section combines the Taylor rule with a monetary model,

and the dynamics are dramatically modified. Here an increase in the inflation rate

of 1% leads to a decrease in money growth for any positive value ofaπ. From

(3), we have that output decreases because inflation increases and money growth

decreases. This double effect means that even if the money growth rate were stable

there would be a dampening effect. A further complication is due to the time lag

implied by inserting (14) into (3), so thatπt andπt−1 affect the dynamics. In this

situation causalities may be difficult to reason through.

Nevertheless, if the hypothesis underlying the model are accepted, a judicious
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choice of values for the Taylor rule could prove useful in stabilizing the equilib-

rium inflation rate. Consider Figure 4 left, with initial conditions some distance

from equilibrium. A safe pair of values might beaπ = 0.25, ag = 0.75. In Figure 2

right we have the same simulations as in Figure 2 left, except for the inclusion of the

Taylor rule with the parameter values mentioned above. It is clear that the inflation

rate stays stable for a wider range of values of the parameter used by extrapolators.

Of course one must always be cautious about letting implications from abstract

models influence policy decisions. The present study suggests that interventions

based on simple models of a Taylor rule may result in undesired consequences if

there are additional relations between macrovariables and other sources of fluctu-

ations in the real economy. The effectiveness of monetary policy rules in the pres-

ence of heterogeneous expectations is also investigated in Anufriev et al. (2008)

and De Grauwe (2008).

4 Concluding remarks

The heterogeneous expectations framework, for which there is solid empirical sup-

port in many economic contexts such as inflation expectations or asset price ex-

pectations, naturally opens up the potential dynamics of any model in which it is

assumed. The basic ingredients of the framework which lead to long-run fluctuat-

ing behavior in the dynamic variables include a destabilizing force, such as extrap-

olative expectations used by trend followers, a stabilizing force, such as rational

expectations and a mechanism for switching between expectations, a weighting of

expectations according to some performance criterion.4

4 A study of the model proposed in Section 2 with extrapolative and reversion expectations

gives similar results (see early, unpublished version in Lines and Westerhoff (2006b).
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We find that in the case of rational versus extrapolative expectations the model is

not destabilized, even by extreme values of the extrapolation coefficient. Rather,

much of the relevant parameter space is dominated by chaotic attractors charac-

terized by intermittency, in which trajectories spend much of the time very near

the equilibrium inflation rate. Hence, heterogeneous expectation formation is one

source of endogenous macroeconomic dynamics. Moreover, a Taylor-like monetary

policy rule which gives weight to an output growth gap has some potential in sta-

bilizing the dynamics. This interesting and important research topic clearly needs

more attention in the future and we hope that our paper contributes to a fruitful

discussion.

Mathematical appendix

To develop equation (4) we need to determine the factor(πe
t − πe

t−1) in terms of

past values of variableπ. We have, from (9) and using the fact thatwE
t + wR

t = 1

πe
t = πR

t + wE
t (πE

t − πR
t ). (i)

Substituting rational expectations (7) and extrapolative (8) strategies into(i) and

rearranging gives

πe
t = πt + wE

t (−πt + (1 + γ)πt−1 − γπt−2). (ii)

From equation (10) we can define

Φt = aR
t − aE

t = (−πt−1 + (1 + γ)πt−2 − γπt−3)
2 − κ, (iii)

so that, from (11)

wE
t = 1/(1 + eλΦt(πt−1,πt−2,πt−3)). (iv)
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Next, using(i) and lagging all dynamic variables once, we obtain

πe
t − πe

t−1 = πt − πt−1

+wE
t (πt−1, πt−2, πt−3)(−πt + (1 + γ)πt−1 − γπt−2)

−wE
t−1(πt−2, πt−3, πt−4)(−πt−1 + (1 + γ)πt−2 − γπt−3).

(v)

Substituting in (4) and settingΩ = πt−1 + πe
t − πe

t−1, we can write (12) as

πt =
αβ(m− gn)

1 + αβ
+

Ω(πt−1, πt−2, πt−3, πt−4)

1 + αβ
. (vi)

Before expandingwE
t andwE

t−1, consider the dynamics at the fixed point of(vi).

We have from (7), (8) and(i):

πE(πn) = πR(πn) = πe
t (πn) = πe

t−1(πn) = πn

which, using (4) and(vi), givesπn = (m − gn). The unique, fixed point inflation

rate of the generalized expectations-augmented system is equal to the difference

between the growth rates of money and output.

Equation(vi) is a fourth-order difference equation that can be written as a first-

order system employing auxiliary variablesxt = πt−1, yt = xt−1 = πt−2, zt =

yt−1 = πt−3:

πt = πt(πt−1, xt−1, yt−1, zt−1)

xt = πt−1

yt = xt−1

zt = yt−1.

(vii)
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The Jacobian matrix for system(vii) is

J(π) =




∂πt

∂πt−1

∂πt

∂xt−1

∂πt

∂yt−1

∂πt

∂zt−1

1 0 0 0

0 1 0 0

0 0 1 0




(viii)

and eigenvalues can be determined explicitly.

At the unique fixed pointπn we have ∂πt

∂zt−1
= 0 and the characteristic equation for

the linear approximation of(vi) using the Jacobian(viii) can be written as

λ(λ3 − aλ2 − bλ− c) = 0. (ix)

The coefficients of(ix) are defined as follows:

a = ∂πt(πn)
∂πt−1

= 2µ+γµ
αβ+µ

b = ∂πt(πn)
∂xt−1

= −2µγ−µ
αβ+µ

c = ∂πt(πn)
∂yt−1

= µγ
αβ+µ

settingµ = (1 + exp(−λκ))−1.

The potential loss of local stability of the fixed point of system(vii) can be explored

by making use of a set of stability conditions for a third order equation (note one

eigenvalue is always zero), such as those of Farebrother (1973). The conditions
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used for the polynomial in parentheses in(ix) are

1− a− b− c > 0 (A)

1 + a− b + c > 0 (B)

1 + b + ac− c2 > 0 (C)

3− a + b + 3c > 0 (D)

associated, respectively, with the fold (A), flip (B) and Neimark-Sacker (C) bifur-

cations. (Proof that no smoothly changing parameter satisfies condition (D) as an

equality while simultaneously satisfying conditions (A), (B) and (C) is found in

Lines, 2007). It can be shown that (A) and (B) are always satisfied, but that (C) is

not. Then the normal inflation rate loses hyperbolicity atγc = αβ+µ
2µ

.
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Fig. 1. Limit sets in parameter space(γ, κ).
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Fig. 2. Top: bifurcation diagrams; bottom: LCEs. Left without, right with monetary rule
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Fig. 3. Top left: state space(πt−1, πt); bottom left:(πt−1, w
e
t ). Top right: time slice ofπt;

bottom right: time slice ofwe
t .

Fig. 4. Limit sets over Taylor coefficients. Left distant, right near equilibrium initial values.
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