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Abstract

I study expectation driven liquidity traps in a model were agents have finite plan-
ning horizons and heterogeneous expectations. There are backward-looking agents,
who base their expectations on past observations, and forward-looking agents, who
observe the expectations of backward-looking agents, and use model equations within
their planning horizon to make forecasts. Expectation driven liquidity traps arise
when the presence of backward-looking agents leads to a wave of pessimism after a
single, non-persistent, negative preference shock. I find that fiscal stimulus in the
form of an increase in government spending or a cut in consumption taxes can be
very effective in mitigating the liquidity trap. Moreover, an adequate response of
these measures is found to always be able to prevent deflationary spirals, that can
arise when there is a large fraction of backward-looking agents with a longer planning
horizon. A positive inflation target furthermore reduces the fiscal stimulus required
to resolve a liquidity trap for any given size of the negative preference shock. In con-
trast, fiscal stimulus in the form of labor tax cuts is deflationary and hardly effective
in mitigating liquidity traps.

∗Email address: joep.lustenhouwer@uni-bamberg.de



1 Introduction

Can fiscal stimulus be used to escape a liquidity trap? Several studies have found that in

a liquidity trap, where the zero lower bound is binding and real interest rates fall when

inflation is increased, government spending multipliers are higher than in normal times

(among others Christiano et al., 2009, Eggertsson, 2011 and Woodford, 2011). This implies

that a government spending stimulus could be used to increase inflation and output, which

might get the economy out of the liquidity trap. Erceg and Lindé (2014) find that fiscal

stimulus can indeed be used to shorten liquidity traps and even resolve them immediately

if the stimulus is large enough. A stimulus in labor taxes on the other hand will be less

effective, because this measure not just increases output, but also increases labor supply,

implying lower wages. The resulting decrease in marginal costs for firms puts downward

pressure on inflation which negativity impacts the severity and possibly the duration of

the liquidity trap.

These results are reversed in a study by Mertens and Ravn (2014), who investigate

the interesting possibility that a liquidity trap is not driven purely by fundamental shocks,

such as persistent shock to the household’s discount factor, but instead by expectations. In

their model such an expectation driven liquidity trap takes the form of a sunspot equilib-

rium. They find that contrary to widely held views, in their setup, increasing government

spending at the zero lower bound is deflationary in equilibrium and is not very effective

in mitigating a liquidity trap, while cutting labor taxes is inflationary in equilibrium and

does mitigate the liquidity trap considerably.

In this paper, I model expectation driven liquidity traps in a framework of bounded

rationality, rather than with a sunspot equilibrium. I find that in line with the literature

on liquidity traps driven by fundamentals, in my liquidity traps driven by boundedly

rational expectations, government spending increases are inflationary and hence effective

in mitigating a liquidity trap while labor tax cuts are deflationary and less effective. This

shows that the reversal of traditional results that was found by Mertens and Ravn (2014)

is not a general feature of liquidity traps driven by expectations, but depends crucially on
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the choice of modeling an expectation driven liquidity trap as a sunspot equilibrium.

Assuming a sunspot equilibrium stays relatively close to the rational expectations

benchmark, and furthermore assumes that all agents in the economy form the same ex-

pectations. These features may not be fully realistic when considering a liquidity trap

that is driven by expectations. In this paper instead, I allow for more bounded ratio-

nality in expectation formation and decision making, and furthermore for heterogeneity

in expectations. First of all, there are two types of agents: forward-looking agents and

backward-looking agents. Forward-looking agents form expectations in a forward-looking

manner, using their knowledge of the model equations. Backward-looking agents on the

other hand, base their expectations on recent observations and assume that all variables

will mean-revert back to their steady state in the future, with some auto-regressive coef-

ficient. These backward-looking expectations represent participants of the economy that

use simple rules of thumps, based on what they are currently observing in the economy.

Such rule of thumb behavior is found to be consistent with expectations of human subjects

in laboratory experiments (see e.g. Assenza et al. (2014) and Pfajfar and Zakelj, 2011) as

well as with survey data (see e.g. Branch (2004, 2007)). This particular form of backward-

looking expectations is used by e.g. Branch and McGough (2010) and Gasteiger (2014),

who label it adaptive expectations. Secondly, all agents in my model have a finite plan-

ning horizon as in Lustenhouwer and Mavromatis (2017). Instead of being able to form

expectations up to an infinite horizon, and basing their decisions on these expectations,

agents are relatively short-sighted and are not able to plan ahead and form expectations

more than T periods into the future. Their optimization problems are therefore adjusted

accordingly.

In this setup of bounded rationality, I study in detail how expectation driven liquidity

traps can arise and how this depends on the fraction of backward-looking agents in the

economy and on agents’ planning horizon. I compare such a liquidity trap, with a liquidity

trap driven by a persistent fundamental shock. Interestingly, I find that when agents have

planning horizons that are not too long, expectation driven liquidity traps of considerable

duration can arise, from which the economy eventually recovers. If on the other hand,
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agents have a long or infinite planning horizon, an expectation driven liquidity trap either

is of only limited duration, or results in a deflationary spiral from which the economy does

not by itself recover.

I then turn to the question whether fiscal stimulus in the form of a spending increase

or tax-cut can mitigate the severity and duration of expectation driven liquidity traps and

prevent deflationary spirals. As mentioned above, I find that an increase in government

spending is effective in mitigating a liquidity trap, while cutting labor taxes has only very

mild positive effects. In addition, I also consider cutting consumption taxes. Unlike a cut

in labor taxes, I find that a cut in consumption taxes is inflationary and can considerably

reduce the duration of a liquidity trap. Moreover, I find that both increases in government

spending and cuts in consumption taxes can prevent deflationary spirals that arise for

large planning horizons, while cuts in labor taxes cannot. Finally, I find in an extension

of the model that the required size of fiscal stimulus to prevent a deflationary spiral can

considerably be reduced if the central bank has a higher inflation target.

My findings regarding the effects of government spending increases in a liquidity trap

are in line with those of Hommes et al. (2015) and a series of papers by Evans and coauthors

(Evans et al., 2008, Evans and Honkapohja (2009), Benhabib et al., 2014). Hommes et al.

(2015) conduct a laboratory experiment, where rather than making any assumptions on

agent’s expectations, they let expectations be formed by human subjects in the laboratory.

They are able to initiate an expectation driven liquidity trap by either initializing the

economy with low historical data for inflation and output gap, or by later showing subjects

pessimistic newspaper opinions. Without fiscal intervention, deflationary spirals regularly

occur in their experiment. However, in treatments where there is a fiscal switching rule

and government spending is increased when inflation is below some threshold deflationary

spirals are always prevented. These confirms the results of Evans et al., 2008, Evans and

Honkapohja (2009) and Benhabib et al., 2014, who find that under adaptive learning such

spending increases can always prevent deflationary spirals that would otherwise have arisen

because of the zero lower bound. These papers however, do not consider the effectiveness

labor or consumption tax cuts. Mertens and Ravn (2014) also do not consider the latter.
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To the best of my knowledge this paper therefore is the first to investigate the effectiveness

of consumption tax cuts in an expectation driven liquidity trap. Eggertsson (2011), Coenen

et al. (2012) and Correia et al. (2013) find that this instrument can be quite effective in a

liquidity trap driven by fundamentals.

The modeling approach with fractions of forward and backward-looking agents is closely

related to Gasteiger (2014, 2017), Branch and McGough (2009) and Elton et al. (2017),

as well as to Massaro (2013) and Deák et al. (2017). The framework used to model finite

horizons is similar to that of Branch et al. (2010) and Woodford (2018). See Lustenhouwer

and Mavromatis (2017) for a detailed discussion of the differences with these frameworks.

This paper is the first to combine such a micro-founded framework of finite planning

horizons with heterogeneity in expectations.

The remainder of the paper is organized as follows. In Section 2, the model and ex-

pectation formation processes are outlined. In Section 3, I present how expectation driven

liquidity traps can occur, and how their duration depends on the behavioral features of the

model. In Section 4, the effectiveness of different fiscal stimulus packages is investigated.

Finally, Section 5 concludes.

2 Model

The model is made up by a continuum of households i ∈ [0, 1], a continuum of firms

j ∈ [0, 1] and a monetary and fiscal authority. Moreover, there are two types of households

and firms. A fraction α of households and firms forms expectations in a backward-looking

manner and a fraction 1− α forms expectations in a forward-looking manner. The expec-

tations of these two types of households and firms will be specified in Section 2.5.

2.1 Households

Households want to maximize their discounted utility over their planning horizon (T peri-

ods), and they also value the state they expect to end up in at the end of these T periods
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(their state in period T+1). They are not able rationally induce (by solving the model

forward), how exactly they should value their state in period T+1. Instead households use

a rule of thumb to evaluate the value of their state (their wealth). As in Lustenhouwer and

Mavromatis (2017), their objective function therefore exists of a sum of utility, U(), out

of consumption and leisure for the periods within their horizon, as well as an extra term

with a function V() that is increasing in end of horizon wealth.

max
Ciτ ,H

i
τ ,B

i
τ

Ẽi
t

t+T∑
s=t

βs−tξsu(Ci
s, H

i
s) + βT+1ξt+T+1V (

Bi
t+T+1

Pt+T
), (1)

subject to

(1 + τ cτ )PτC
i
τ +

Bi
τ+1

1 + iτ
≤ (1− τ lτ )WτH

i
τ +Bi

τ + PτΞτ , τ = t, t+ 1, ...t+ T (2)

where Bi
t are nominal bond holdings from household i at the beginning of period t; Ci

τ and

H i
τ are the household’s consumption and labor; Ξt are real profits from firms which are

equally distributed among households; τ cτ and τ lτ are respectively the consumption tax and

labor tax rates; iτ is the nominal interest rate; Pτ is the price level; and Wt is the nominal

wage rate. Finally β is the household’s discount factor, while ξτ is an exogenous preference

shock.

Furthermore, it is assumed that households have CRRA preferences both for consump-

tion and labor and for wealth at the end of their horizon. Moreover, the relative utility of

real bond holdings in a given period compared to consumption in that period is be given

by Λ. The functional form of V (.) therefore becomes

V (x) = Λ
x1−σ

1− σ
. (3)

Dividing the budget constraint by Pτ gives

(1 + τ cτ )Ci
τ +

Bi
τ+1

(1 + iτ )Pτ
≤ (1− τ lτ )wτH i

τ +
Bi
τ

Pτ
+ Ξτ , τ = t, t+ 1, ...t+ T (4)
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The first order conditions of the maximization problem are

ξτ (C
i
τ )
−σ = λiτ (1 + τ cτ ), τ = t, t+ 1, ...t+ T (5)

(H i
τ )
η = λiτ (1− τ lτ )wτ , τ = t, t+ 1, ...t+ T (6)

λiτ = β
(1 + iτ )λ

i
τ+1

Πτ+1

, τ = t, t+ 1, ...t+ T − 1 (7)

λit+T = βξt+T+1(1 + it+T )(
Bi
t+T+1

Pt+T
)−σΛ, (8)

Next we define a measure of real bond holdings, scaled by steady state output: bt =

Bt
Pt−1Ȳ

. Substituting for this expression in (8) and (4) gives

λit+T = βξt+T+1(1 + it+T )(Ȳ bit+T+1)−σΛ, (9)

and

(1 + τ cτ )Ci
τ + Ȳ

biτ+1

1 + iτ
≤ (1− τ lt )wτH i

τ +
Ȳ biτ
Πτ

+ Ξτ , τ = t, t+ 1, ...t+ T (10)

2.2 Firms

There is a continuum of firms producing the final differentiated goods. There is monopo-

listic competition and each firm is run by a household and follows the same heuristic for

prediction of future variables as that household in each period.

Each firm has a linear technology with labor as its only input

Yt(j) = Ht(j), (11)

Since firms are owned by households, they will be short sighted. That is, they will form

expectations about their marginal costs and the demand for their product for T periods

ahead only. We assume that in each period a fraction (1−ω) firms can change their price,

as in Calvo (1983). The problem of firm j that can reset its price is then to maximize the
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discounted value of its profits for the next T periods.

Ẽj
t

T∑
s=0

ωsQj
t,t+s

[
pt(j)Yt+s(j)− Pt+smct+sYt+s(j)

]
, (12)

where

Qj
t,t+s = βs

ξt+s
ξt

1 + τ ct
1 + τ ct+s

(
Cj
t+s

Cj
t

)−σ
Pt
Pt+s

. (13)

is the stochastic discount factor of the household (j) that runs firm j.

Using the demand for good j, the firm’s profits maximization problem writes as follows

max Ẽj
t

T∑
s=0

ωsβs
ξt+s
ξt

1 + τ ct
1 + τ ct+s

(
Cj
t+s

Cj
t

)−σ
Pt

[(
pt(j)

Pt+s

)1−θ

Yt+s −mct+s
(
pt(j)

Pt+s

)−θ
Yt+s

]
.

(14)

The first order condition for pt(j) is

Ẽj
t

T∑
s=0

ωsβs
ξt+s
ξt

1 + τ ct
1 + τ ct+s

(
Cj
t+s

Cj
t

)−σ
Pt
Pt+s

Yt+s

[
(1−θ)

(
p∗t (j)

Pt+s

)−θ
+θmct+s

(
p∗t (j)

Pt+s

)−1−θ
]

= 0,

(15)

where p∗t (j) is the optimal price for firm j if it can re-optimize in period t.

Next, turn to the evolution of the aggregate price level. I assume that the set of firms

that can change their price in a period is chosen independently of the type of the household

running the firm, so that the distribution of expectations of firms that can change their

price is identical to the distribution of expectations of all firms. Since decisions of firms

only differ in so far their expectations differ, it follows that the aggregate price level evolves

as

Pt = [ωP 1−θ
t−1 + (1− ω)

∫ 1

0

p∗t (j)
1−θdj]

1
1−θ , (16)

This can, after dividing by Pt, be written as

1 = ωΠθ−1
t + (1− ω)

∫ 1

0

dt(j)
1−θdj, (17)
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2.3 Government and market clearing

The government issues bonds and levies labor taxes (τ lt ) and consumption taxes (τ ct ) to

finance its (wasteful) spending (Gt). Its budget constraint is given by

Bt+1

1 + it
= PtGt − τ ltWtHt − τ ct PtCt +Bt, (18)

with Ht =
∫
H i
tdi and Bt =

∫
Bi
tdi aggregate labor and aggregate bond holdings respec-

tively. Dividing by Ȳ Pt gives

bt+1

1 + it
= gt − τ ltwt

Ht

Ȳ
+ τ ct

Ct
Ȳ

+
bt
Πt

, (19)

where bt = Bt
Pt−1Ȳ

and gt = Gt
Ȳ

are the ratios of debt to steady state GDP and government

expenditure to steady state GDP, respectively.

Market clearing is given by

Yt = Ct +Gt = Ct + Ȳ gt (20)

Fiscal policy is given by

gt = DSt, (21)

and

τ lt = DLTt − γ(bt − b̄), (22)

τ ct = DCTt, (23)

where DSt is a time varying component of discretionary spending, and DLTt and DLTt

are time varying components of discretionary labor and consumption taxes respectively.
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These variables will be used below to model discretionary fiscal stimulus. Additionally,

labor taxes stabilize the debt ratio with a coefficient of γ.

The monetary policy rule is given by

1 + it = max

(
1, (1 + ī)

(
Πt

Π̄

)φ1 (Yt
Ȳ

)φ2)
(24)

2.4 Linearized model

In Appendix B the model is linearized around a general inflation target, and the resulting

model equations are given by Equations (78) through (95) in that appendix. In most of

the paper I assume a zero inflation target, and only in Section 4.3 I focus on the effects

of changing the inflation target to a positive value. When the inflation target is 0, the

linearized model equations reduce to

(1− νy0)Ŷt =
1

ρ0

b̃t + gt + ντ0

T∑
s=0

βs(Ētτ̂
l
t+s) + νg0

T∑
s=0

βs(Ētĝt+s) + νy0

T∑
s=1

βs(ĒtŶt+s)

(25)

− µ0

T∑
s=1

βs
s∑
j=1

(Ētit+j−1 − Ētπ̂t+j) +
b̄

ρ0

T∑
s=0

βs(βĒtît+s − Ētπ̂t+s)

− βT+1 b̄

σρ0

T−1∑
j=0

(Ētit+j − Ētπ̂t+j+1)− βT+1 b̄

σρ0

Ētit+T

+ δξ0ξt + νξ0

T∑
s=0

βsĒtξ̃t+s − µξ0
T∑
s=1

βs(Ētξt+s − ξt)− βT+1 b̄

σρ0

(Ētξt+T+1 − Ētξt+T )

− δξ0
1 + τ̄ c

τ̃ ct + νc0

T∑
s=0

βsĒtτ̃
c
t+s +

(1− ḡ)

ρ0σ

T∑
s=1

βs(Ētτ̃
c
t+s − Ētτ̃ ct )− βT+1 b̄

σρ

Ētτ̃
c
t+T

1 + τ̄ c
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π̂t =κ̃(η +
σ

1− ḡ
)

T∑
s=0

ωsβsÊtŶt+s −
κ̃σ

1− ḡ

T∑
s=0

ωsβsÊtg̃t+s (26)

+
κ̃

1 + τ̄ c

T∑
s=0

ωsβsÊtτ̃
c
t+s +

κ̃

1− τ̄ l
T∑
s=0

ωsβsÊtτ̃
l
t+s + κ̃

T∑
s=1

ωsβs
s∑

τ=1

Êtπ̂t+τ ,

b̃t+1 =
1

β
g̃t −

τ̄ c

β
(Ŷt − g̃t)−

1− ḡ
β

τ̃ ct +
1

β
b̃t + b̄(̂it −

1

β
π̂t) (27)

− w̄

β

[
τ̄ l
(

(1 + η +
σ

1− ḡ
)Ŷt − σ

g̃t
1− ḡ

+
τ̃ ct

1 + τ̄ c
+

τ̃ lt
1− τ̄ l

− ξt
)

+ τ̃ lt

]
,

with coefficients defined in Appendix B.4.

Linearized monetary and fiscal policy equations are given by

ît = φ1π̂t + φ2Ŷt, (28)

g̃t = D̃St, (29)

τ̃ lt = ˜DLT t + γb̃t, (30)

τ̃ ct = ˜DCT t. (31)

2.5 Expectations

There are two types of agents in the economy: forward-looking agents and backward-

looking agents. Backward-looking agents consider the last observation of all variables, and

consider this observation to be most informative about the current state of the economy,

and its future evolution. They however do not expect the economy to stay in its current

state forever, but instead expect mean-reversion to the target steady state in the future.

In particular their expectations about output s periods from now is given by

Eb
t Ŷt+s = ρs+1Ŷt−1 (32)
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Branch and McGough (2010) and Gasteiger (2014) and others refer to these expectations

as adaptive expectations. Expectations about inflation, debt, the nominal interest rate,

government spending, taxes and (in case of a positive inflation target) price dispersion are

formed analogously. I assume that backward-looking agents always expect future realiza-

tion of the preference shock to be zero.1

Forward-looking agents understand the mechanics of the economy. They also now what

fraction of agents in the economy is backward-looking and what fraction is forward-looking.

Moreover, they observe the expectations that backward-looking agents have formed in the

current period, about the next T periods. They are however not rational enough to know

exactly how backward-looking agents are forming their expectation. Therefore, forward-

looking agents have no reason to believe that backward-looking agents will later revise

currently formed expectations about a particular future period. Instead, forward-looking

agents assume that backward-looking agents will stick with the expectations about future

period that they have currently formed, and will only come up with new expectations when

periods that currently still lie outside their planning horizon are concerned.2 Mathemati-

cally, this implies Ef
t [Eb

t+kYt+s] = Eb
tYt+s, with k < s ≤ T .

Moreover forward-looking agents are restricted in their ability to sophisticatedly think

about the future, by their planning horizon. As in Lustenhouwer and Mavromatis (2017), I

assume that forward-looking agents rationally use the model equations within their horizon

to form model consistent expectations, but they are not able to form expectations for

variables outside their horizon in a sophisticated manner.

Because of the above mentioned bounded rationality, forward-looking agents know the

model equations and the structural form of the minimum state variable solution of the

model, but their computed solution may not always be fully model consistent, as described

below.

1This assumption is made because I want to highlight expectation driven liquidity traps that arise
because backward-looking agents expect variables like output and inflation to remain low after a single,
non persistent shock. I do not want to consider liquidity traps that arise because agents expect the shock
itself to be persistent, even when it is not.

2In Section 3.4, robustness to the case of fully rational forward-looking agents is discussed.
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Forward-looking agents start with forming expectations about the final period of their

horizon. To do this, they take the model equations of period t + T . However, in the IS

and Phillips curves of that period (Equations (25) and (26) forwarded T periods), finite

sums with expectations about period t+ T + 1 up to period t+ T + T appear. That is, in

the model equations they are considering, expectations of variables outside their planning

horizon show up. Forward-looking agents therefore need to give these expectations a value,

without being able to solve in a sophisticated manner what will happen in these periods

(since they lie outside their planning horizon). Instead, they assume that in periods after

their horizon, the model will have converged to a steady state, with all agents believing

in steady state values for the future. With this assumption, they are able to solve for

period t + T variables in terms of the state variable bt+T . They then move to the model

equations of period t + T − 1. Here they plug in the solution of period t + T variables as

expectations for forward-looking agents, and the current expectations about period t + T

of backward-looking agents as expectations for backward-looking agents. They then again

assume steady state levels for expectations of variables outside their horizon. This allows

them to solve for period t+ T − 1 variables in terms of state variable bt+T−1. This process

goes on until they have solved for all expectations of forward-looking agents within their

horizon in terms of the observed state variable bt. Expectations of variables for the periods

within the horizon can then be obtained from these policy functions by plugging in the

value of the current debt level.

3 Liquidity traps

In this section I show that in the above model with forward-looking and backward-looking

agents liquidity traps can arise that are mainly driven by expectations rather than funda-

mentals. In order to highlight the role of expectations I initiate a liquidity trap by a single,

non-persistent shock to the fundamentals of the economy that temporarily lowers output

and inflation, in an economy with a relatively large fraction of backward-looking agents

(75%). I compare this case of a liquidity trap driven by expectations of backward-looking
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agents, with the case of a liquidity trap driven by fundamentals, where the fundamental

shock is persistent (auto-correlation coefficient of 0.85), and there are no backward-looking

agents. The particular shock that I consider is a negative preference shock that decreases

the rate at which households discount the future and creates a desire to save. Similar

shocks are used to model a liquidity trap by e.g. Eggertsson (2011) and Mertens and Ravn

(2014).3

Note that under fully rational expectations, a liquidity trap of multiple periods could

arise in case of a persistent negative preference shock, but that it would at most last one

period in the case of a single non-persistent shock. The intuition for an expectation driven

liquidity trap to arise in the behavioral model, even after only a single non-persistent

shock, is the following. In the behavioral model, a bad shocks can trigger pessimism in

the economy, with backward-looking agents expecting low output and inflation for the

future. This causes agents to reduce consumption and prices, so that the liquidity trap

continues. The liquidity trap is then however purely driven by expectations, without any

bad fundamentals.

Below, I illustrate how liquidity traps can arise (Section 3.2), and how the occurrence

of expectation driven liquidity traps depends on the size of the shock and the fraction

of backward-looking agents (Section 3.3). In addition, there is an important role for the

planning horizon of agents. This will be the focus of Section 3.4. First, the parameterization

is discussed in Section 3.1.

3.1 Parameterization

In the model, one period corresponds to one quarter. I set the discount factor to β = 0.99,

the coefficient of relative risk aversion to σ = 1, the inverse of the Frisch elasticity of

labor supply to η = 2, the elasticity of substitution to θ = 6 and the Calvo parameter

to ω = 0.75. These values are relatively standard in the literature. Steady state fiscal

3Note that the particular form of the shock is not important for the main results of the paper. The only
thing that matters for an expectation driven liquidity trap is that output and inflation are reduced for a
single period, so that backward-looking agents adjust their expectations. The exact reason for output and
inflation to have declined is of no consequence.
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variables I choose more or less in line with US historical averages as follows: steady state

government spending as a share of GDP is set at ḡ = Ḡ/Ȳ = 0.25; the steady state

labor and consumption tax rate are set to respectively τ̄ l = 0.24 and τ̄ c = 0.08, so that

the steady state debt to GDP ratio becomes b̄ = 1. Monetary and fiscal policy variables

are set to φ1 = 1.5 and φ2 = 0.157 (implying a response to output of around 0.6 when

annual data are used) and γ = 0.1. I further set the mean reversion in the expectations of

backward-looking agents to 0.85. With that calibration, backward-looking agents expect

the deviation of variables to be halved in approximately 4 quarters. In Appendix D, I study

robustness to the calibration of this parameter. As a benchmark, I fix agent’s planning

horizon at T = 8, but in most sections I present results for different planning horizons.

3.2 Illustration of expectation driven liquidity traps

Figure 1 plots, the simulated time series of output, inflation the nominal interest rate, taxes

and debt and the preference shock. In the purple and dashed green cases there is a single,

non-persistent negative preference shock in period 2 of −20%. In the dashed green case,

all agents are forward-looking. Agents then know that there is no reason to adjust their

inflation and output expectations considerably downward, because there is little inertia

in the economy. This is because there is no auto-correlation in the preference shock and

there are no backward-looking agents in the economy. In this case, the liquidity trap is

immediately resolved in period 3, when the bad shock has passed.

The purple curves depict a liquidity trap driven by expectations, where 75% of agents

in the economy are backward-looking. In the period after the negative preference shock,

backward-looking agents adjust their inflation and output expectations downward, and

expect the liquidity trap to continue. This causes backward-looking agents to lower con-

sumption and prices. Forward-looking agents are aware of this, and rationally expect lower

inflation as well, so that they also lower their prices somewhat compared to the case with

no backward-looking agents. The lowering of prices of both backward- and forward-looking

firms causes inflation to remain low in period 3. This causes the wave of pessimism to con-
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Figure 1: Liquidity traps for T = 8. The dashed green and solid purple curves depict the case
of a single non-persistent shock with respectivley only forward-looking agents and
75% backward-looking agents (expectation driven liquidity trap). The dashed-dotted
curve depicts the case of a liqudity trap driven by a persistent negative preference
shock with only forward-looking agents.
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tinue, and the expectation driven liquidity trap now lasts up to and including period 6 (a

total of 5 quarters).

The black dashed-dotted curve depicts the case of a liquidity trap driven by funda-

mentals. Here all agents are forward-looking, but the negative preference shock is now

persistent with auto-correlation coefficient 0.85. Because the fundamentals now remain

low for a number of periods, agents in the economy choose relatively low consumption and

prices for several periods. As a result, the liquidity trap now lasts up to and including

period 5, even though there are now backward-looking agents in the economy.

3.3 Duration of liquidity trap

Next let us move to a more robust analysis of the model dynamics and the length of

liquidity trap for different fractions of backward-looking agents and for different sizes of

the fundamental shock. Panel (b) of Figure 2 displays the duration of the expectation

driven liquidity trap in case of a planning horizon of 8. On the horizontal axis is the

fraction of backward-looking agents and on the vertical axis is the size of the one-time

negative preference shock (in absolute value). The figure shows the following. When the

shock size is small, the zero lower bound does not become binding, and no liquidity trap

arises. This is the lightest region and the bottom of the figure. When the shock is a bit

larger but not too large, or when the fraction of backward-looking agents is small, the

liquidity trap is immediately over after the fundamental shocks are over (duration of 1

period). This is the second lightest region in the bottom left of the figure. The dashed

green case of Figure 1, where the fraction of backward-looking agents was 0, falls in that

area. For larger fractions of backward-looking agents and/or larger shocks, the liquidity

trap last longer and longer, as can be seen from the changing color shades.

Remember that the liquidity trap with duration 5 presented in purple in Figure 1 had

a share of 0.75 backward looking agents and a shock size of 0.20%. In panel (b) of Figure

2 it can be seen that liquidity traps of longer duration arise when the negative preference

shock is of larger magnitude, but especially if the fraction of backward-looking agents in

16



the economy is made even higher.

3.4 Planning horizon

Now let us turn to the effect of the planning horizon of the agents on the liquidity traps.

Figure 3 plots in purple the expectation driven liquidity of Figure 1, where the planning

horizon equals 8 and the fraction of backward-looking agents is 75%. The dashed green

curves in Figure 3 depict the case of a shorter horizon of T = 4, while the dashed-dotted

black curves depict the case of the longer horizon of T = 16.

Comparing the output and inflation response to the initial fundamental shock in period

2, it can be seen that these responses are very similar for all three horizons. The differences

in expectations of backward-looking agents in period 3 are therefore also not very large.

Nonetheless, when the preference shock is over, the pessimistic expectations for T = 8

imply a prolonged expectation driven liquidity trap with slow convergence to the steady

state, while similar expectations for T = 4 imply almost immediate convergence, and for

T = 16 imply a rapid drop in output and inflation and a subsequent deflationary spiral.

The reason for this is the effects that pessimistic expectations about the future have on

agents’ consumption, labor and pricing decisions. Short sighted agents only consider a

small number of future periods when making decisions. For T = 4, backward-looking

consumers expect increased real interest rates and lowered output for the next 4 periods,

and reduce their consumption somewhat accordingly. However, they do not consider what

might happen after these four periods when making their decisions. An agent with a

planning horizon of T = 16 on the other hand, cares about considerably more future

periods. When this agent expect real interest rates and output to be low also five periods

from now and later, he will reduce his consumption more than an agent that looks only 4

periods into the future.4

4Note that there is also a role in this story for the coefficient of mean reversion in the expectations
of backward-looking agents, d. In Appendix D it is shown that when this coefficient is reduced, liquidity
traps last less long for a given shock size and fraction of backward-looking agents. It is furthermore shown
that the differences between planning horizons are then reduced. The intuition for this is as follows. When
backward-looking agents expect very fast mean reversion agents with longer horizons do not expect high
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Figure 2: Length of liquidity trap for different fractions of backward-looking agents (x-axis) and
different sizes of the (non-persistent) negative preference shock (y-axis). The different
panels correspond to different planning horizons. Darker color shades indicate a longer
duration of the liquidity trap. The fully white areas in the top right of the bottom
4 panels indicate liquidity traps of infinite length with ever decreasing inflation and
output (deflationary spirals).
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T = 16 (dashed-dotted black).
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Figure 4 plots liquidity traps driven by fundamentals for different horizons. That is,

all agents are forward-looking and the negative preference shock is persistent, as in the

dashed-dotted black case of Figure 1. Again, purple corresponds to T = 8, dashed green to

T = 4 and dashed-dotted black to T = 16. In the figure, it can be seen that the qualitative

differences between the three curves are small. In all cases, output and inflation first fall

and then slowly recover. Moreover, the length of the liquidity traps vary only a little (2-4

periods) for the different horizons, unlike in Figure 3. However, it remains the case that

longer horizons lead to longer and deeper recessions and longer liquidity traps.

Now let us consider more generally what the change in planning horizon implies for

different values of the shock size and different values of the fraction of backward-looking

agents. Panels (a) of Figure 2 reproduces panel (b), but now with a planning horizon of

T = 4 instead of T = 8. The liquidity trap now lasts at most 4 periods, and that only for

a relatively high fraction of backward-looking agents. This reflects that a shorter horizon

implies faster recovery and shorter liquidity traps for any given combination of the shock

size and the fraction of backward-looking agents.

Panels (c) and (d) of Figure 2 plot the cases of respectively T = 16 and T = 32. Here it

can be seen that as the fraction of backward-looking agents is increased, the liquidity traps

last longer than in the case of T = 8. However for larger fractions of backward-looking

agents and larger shock sizes, it is no longer the case that very long liquidity traps arise

from which the economy eventually recovers. Instead, the economy falls in a deflationary

spiral, as was illustrated by the green curve in Figure 3. In Figure 2, deflationary spirals

with ever lasting liquidity traps are indicated by white areas. The intuition for such a

deflationary spiral to arise is that backward-looking agents expect low inflation, high real

interest rates and low output for most of the periods within their horizon, and hence reduce

prices and consumption with considerable magnitude. When there are enough backward-

looking agents in the economy, the resulting drop in inflation and output is enough to

real rates in the extra periods that they are considering and hence do not reduce consumption and prices
more than short-sighted agents. It is further shown in Appendix D that when the coefficient of mean
reversion in expectations is increased, liquidity traps last longer and deflationary spirals occur more often,
also for shorter horizons.
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make agents even more pessimistic in the next period, causing inflation and output to keep

falling further and further.

Panel (e) of Figure 2 plots the case of an infinite planning horizon. The results are

very similar to those in panel (d), but also to those in panel (c). Deflationary spirals

occur somewhat more, but not drastically so. This is because backward-looking agents

expect the economy to have more or less returned to steady state after 16 periods, so

that backward-looking agents with a planning horizon longer than 16 periods do not base

their consumption and pricing decisions on a longer sequence of low inflation and high real

interest rates than agents with a planning horizon of 16 periods.

Note that in panel (e) the assumption is maintained that forward-looking agents do not

anticipate revisions in expectations of backward-looking agents. In panel (f) I relax this

assumption as a robustness check, and allow the forward-looking agents to become fully

rational. Panel (e) and (f) look qualitatively very similar with short liquidity traps for small

fractions of backward-looking agents and small shock-sizes and deflationary spirals in case

of larger fractions of backward-looking agents with a larger shock size. It can therefore be

concluded that the above mentioned assumption is not very impotent for the qualitative

dynamics that the model displays, but only slightly alters dynamics quantitatively. The

model equations used to create the graphs in panel (e) and (f) of Figure 2 are derived in

Appendix C.

4 Fiscal stimulus

Now lets consider whether fiscal stimulus in the form of a temporary increase in government

spending or cut in labor or consumption taxes can mitigate an expectation driven liquidity

trap. In particular, assume that the government implements a stimulus package in period

3 (the period after the start of the liquidity trap), and that the the stimulus package is

persistent, with auto-correlation coefficient 0.7.5

5I find similar results if the stimulus is not persistent, or has a different auto-correlation coefficient.
However, the lower the persistence in the stimulus package, the larger the initial stimulus needed to realize
a required effect, which may lead to unreasonably large changes in fiscal variables.
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Moreover I first assume in Section 4.1 that the size of the initial spending increase is

half the size of the initial negative preference shock. In Sections 4.2 and 4.3, I investigate

what size of the stimulus package would be needed in order to prevent a deflationary spiral

for respectively the benchmark calibration and the case of a positive inflation target. The

sizes of the labor tax and consumption tax cuts will always be scaled by respectively 1
w̄

and 1
¯1−ḡ , so that all stimulus measures have the same direct impact on the government’s

budget deficit, and hence are comparable.

4.1 Spending increases and tax cuts

The solid purple curves in Figures 5 and 6 again reproduce the expectation and fundamen-

tals driven liquidity traps of Figures 1. The other graphs show the time series in case of a

fiscal stimulus package starting from period 3. In particular, dashed green corresponds to

a spending increase, dashed-dotted black corresponds to a labor tax cut, and dotted blue

depicts the case of a cut in consumption taxes.6

First focusing on the dashed green cases, the following can be observed. When govern-

ment spending is increased in period 3, both output and inflation are increased considerably.

Moreover, because forward-looking agents realize that the persistent spending increase will

keep output and inflation high, they raise their output and inflation expectations, and in-

crease consumption and prices. In Figure 6 this leads to an immediate end to the liquidity

trap. In Figure 5 there are not enough forward-looking agents to immediately end the

liquidity trap in period 3. However, in period 4 backward-looking agents also raise their

expectations because they observed higher output and inflation in period 3. Therefore I

find that also in case of an expectation driven liquidity trap, spending increases can be

highly effective in ending a liquidity trap.

Next, consider the dashed-dotted black case of cutting labor taxes. As can be seen

in Figure 5 and 6 this measure raises output somewhat. However cutting labor taxes is

deflationary both in the liquidity trap driven by fundamentals an ind the liquidity trap

6I have assumed that the implementation of the stimulus package is announced and anticipated in
period 2. Assuming unanticipated fiscal stimulus in period 3 results in very similar graphs.
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Figure 5: Expectation driven liquidity trap for T = 8. The solid purple curves depict the case
of no fiscal stimulus, while dashed green corresponds to an increase in government
spending, dashed dotted black to a cut in labor taxes and dotted blue to a cut in
consumption taxes.
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driven by expectations. The zero lower bound now remains binding and the increase in

output is limited by an increase in the real interest rate. All in this stimulus package is

only able to reduce the length of the binding zero lower bound by one period in case of the

expectation driven liquidity trap and not at all in the liquidity trap driven by fundamentals.

Finally, lets turn to the case of cutting consumption taxes depicted in dotted blue.

Unlike cutting labor taxes, this measure leads to inflationary pressures. This first of all

directly mitigates the zero lower bound problem, and secondly implies a lower real interest

rate, and a further increase in consumption and output. All in all, output and inflation

rise somewhat less than under spending increases, but the consumption tax cuts are as

effective in ending both the expectation driven and the fundamentals driven liquidity trap.

The result that a spending increase or a consumption tax cut can quickly end a liquidity

trap, while a labor tax cut only slightly reduces its length is robust to the fraction of

backward-looking agents and the shock size. This can be seen in panel (b) of Figures 7, 8

and 9 that reproduce Figure 2 for the cases of respectively spending increases, labor tax

cuts, and consumption tax cuts.

Moreover, the same general result appears for different planning horizons. It can be

seen in panel (a) of Figures 7, 8 and 9 that the liquidity trap is resolved more quickly

under spending based stimulus and consumption tax cuts than under labor taxes cuts, also

when the horizon is short. Comparing panels (d) and (e) of Figures 7, 8 and 9 with those

of Figures 2, it can be seen that for longer horizons spending increases and consumption

tax cuts shorten liquidity traps and reduce the risks of deflationary spirals, while labor tax

cuts do not lead to visible improvements.

4.2 Size of stimulus package

In section 4.1, the size of the spending stimulus was equal to half the size of the negative

preference shock. This is arguably somewhat ad hoc. Moreover, for both spending and

tax based stimulus deflationary spirals still occurred for longer horizons when the shock

size and the fraction of backward-looking agents are large. Table 1 presents the size of the
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Figure 7: Length of liquidity trap in case of persistent spending stimulus for different fractions
of backward-looking agents (x-axis), different sizes of the (non-persistent) negative
preference shock (y-axis) and different horizons (the four panels).
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Figure 8: Length of liquidity trap in case of persistent labor tax cuts for different fractions
of backward-looking agents (x-axis), different sizes of the (non-persistent) negative
preference shock (y-axis) and different horizons (the four panels).
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Figure 9: Length of liquidity trap in case of persistent consumption tax cuts for different
fractions of backward-looking agents (x-axis), different sizes of the (non-persistent)
negative preference shock (y-axis) and different horizons (the four panels).

initial stimulus that is required to prevent a deflationary spiral for different shock sizes and

different fractions of backward-looking agents, in case of a planning horizon of T = 16.7

The table only presents the cases of a spending increase and of a consumption tax cut,

because I find that a cut in labor taxes can never prevent a deflationary spiral, no matter

how large the cut.

It can be seen in panel a of Table 1 that for a shock size of 0.05 no fiscal stimulus is

required to prevent a deflationary spiral and for a shock size of 0.1, only for large fractions

of backward-looking agents. This is in line with panel (c) of Figure 2 where no deflationary

spirals occur in that area. As the shock size and/or the fraction of backward-looking agents

is increased in Table 1, larger spending increases are needed to prevent a deflationary

spiral. For very large shocks and large fractions of backward-looking agents the required

7As was found in the previous section, increasing the horizon above 16 (to 32 or even to infinity) does
not drastically increase the occurrence of deflationary spirals. Therefore the required sizes of a stimulus
package for longer horizons is somewhat higher, but generally similar to the numbers presented in Table
1.
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Panel a: Increase in g̃t (government spending)

shock size \ frac BL 0.5 0.6 0.7 0.8 0.9 1

0.3 0 4 7 10 12 13
0.25 0 2 5 7 9 10
0.2 0 0 3 5 6 7
0.15 0 0 0 2 3 4
0.1 0 0 0 0 0 1
0.05 0 0 0 0 0 0

Panel b: Cut in τ̃ ct (1− ḡ) (consumption taxes)

shock size \ frac BL 0.5 0.6 0.7 0.8 0.9 1

0.3 0 4 8 11 14 15
0.25 0 2 6 8 10 12
0.2 0 0 3 5 7 8
0.15 0 0 0 2 3 4
0.1 0 0 0 0 0 1
0.05 0 0 0 0 0 0

Table 1: Required magnitude of fiscal stimulus to prevent deflationary spiral for different shock
sizes and fractions of backward-looking agents when agents have a planning horizon of
T = 16.

size exceeds the size that was assumed in Figure 7, which explains why deflationary spirals

still occurred in panel (c) of that figure. This means however, that with slightly larger

spending increases deflationary spirals could have been prevented all together in panel (c)

of Figure 7.

Turning to panel b of Table 1 it can be seen that consumption taxes can also prevent

deflationary spirals and that their required magnitudes (after re-scaling with steady the

steady state consumption to output ratio, C̄
Ȳ

= 1 − ḡ, to make their direct impact on the

governments budget deficit equal to that of a spending increase) are slightly larger than

the required government spending increases. Note however that given the relatively low

calibration of steady state consumption taxes, the cuts required to prevent deflationary

spirals for large shocks and a large fraction of backward-looking agents may be unrealisti-

cally high and require consumption taxes to become negative. In this case a combination

of spending increases and consumption tax cuts may be a more realistic, better balanced

way to proceed. Moreover, as shown in the next section, the required size of a stimulus

package can be considerably decreased in case of a positive inflation target.
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Panel a: Increase in g̃t (government spending)

shock size \ frac BL 0.5 0.6 0.7 0.8 0.9 1

0.3 0 0 3 6 7 9
0.25 0 0 1 3 5 6
0.2 0 0 0 1 2 3
0.15 0 0 0 0 0 0
0.1 0 0 0 0 0 0
0.05 0 0 0 0 0 0

Panel b: Cut in τ̃ ct (1− ḡ) (consumption taxes)

shock size \ frac BL 0.5 0.6 0.7 0.8 0.9 1

0.3 0 0 3 6 9 10
0.25 0 0 1 3 5 7
0.2 0 0 0 1 2 3
0.15 0 0 0 0 0 0
0.1 0 0 0 0 0 0
0.05 0 0 0 0 0 0

Table 2: Required magnitude of fiscal stimulus to prevent deflationary spiral for different shock
sizes and fractions of backward-looking agents when agents have a planning horizon of
T = 16 and the central bank targets inflation of annualized 2%.

4.3 Fiscal stimulus under positive inflation target

So far I have assumed that the central bank has an inflation target of zero. It turns out

that in my model a higher inflation target decrease the occurrence, severity and duration of

liquidity trap for a given shock size. This is intuitive, as a positive inflation target implies

a higher steady state nominal interest rate, so that there is more room to decrease interest

rates until the zero lower bound is hit. Therefore, a liquidity trap of given severity only

arises with larger shocks when the inflation target is set higher.

This also implies that for a given shock size and fraction of backward-looking agents a

smaller fiscal stimulus package is required to reduce a liquidity trap to a given duration, or

to prevent a deflationary spiral. This is illustrated in Table 2 that reproduces Table 1 for

the case of an annualized inflation target of 2%. It can be seen in Table 2 that for smaller

shocks and/or smaller fractions of backward-looking agents deflationary spirals do not arise

at all anymore, and no fiscal intervention is needed (as indicated by 0’s). Moreover, for

larger shock sizes and large fractions of backward-looking agents the required size of the

stimulus package is considerably reduced compared to Table 1 where the inflation target
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was zero. This holds for both spending increases and labor tax cuts. As before, labor tax

cuts are not effective in preventing liquidity traps, and this case is therefore not shown in

Table 2.

5 Conclusion

I present a New Keynesian model with two forms of bounded rationality. First of all all

agents in the economy have a finite planning horizon and are not able to base their consump-

tion and pricing decisions upon considerations and expectations about the infinite future.

Secondly, while one fraction of agents is forward-looking and uses the model equations to

form expectations, another fraction of agents forms expectations in a backward-looking

manner, based on the most recently observed state of the economy. They expect a similar

economic situation to continue in the short run, but expect mean reversion to the target

steady state in the medium to long run.

The presence of backward-looking agents in the economy can result in a liquidity trap of

multiple periods, driven by expectations, after a single negative shock to the economy. The

duration of such an liquidity trap crucially depends on the fraction of backward-looking

agents in the economy, the size of the shock that triggered the liquidity trap, and agents’

planning horizons. When these quantities are low, the liquidity trap lasts at most one or

two periods. Expectation driven liquidity traps of longer duration can arise if the planing

horizon is still relatively short, but the fraction of backward-looking agents becomes larger.

When both the planning horizon and the fraction of backward-looking agents are large, it

can occur that the economy never recovers from the liquidity trap, but instead falls in a

deflationary spiral.

I show that fiscal stimulus in the form of a spending increase or a cut in consumption

taxes can be very effective in reducing the length of the liquidity trap. Moreover, when

the stimulus is of the appropriate size, deflationary spirals can always be prevented. Labor

tax cuts on the other hand, are not very effective in reducing the length of the liquidity

traps, and are not able to prevent deflationary spirals, independent of the size of the tax
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cut. The intuition for this is that, as in a standard liquidity trap driven by fundamentals,

spending increases and consumption tax cuts are inflationary in my expectation driven

liquidity traps, while labor tax cuts are deflationary. This result is in contrast with the

findings of Mertens and Ravn (2014) who find that in a liquidity trap driven by a sunspot

shock spending increases are deflationary while labor tax cuts are inflationary.

Finally, I find that a higher inflation target reduces the severity and duration of liquidity

traps. Therefore, smaller fiscal stimulus packages are needed to mitigate liquidity traps

and prevent deflationary spiral when the monetary authority targets higher inflation.
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A Steady state

In this section the steady state of the non-linear model is derived, where the preference

shock is assumed to be constant at ξ = 1.

From the consumer Euler equation it follows that in this steady state we must have

1 + ī

Π̄
=

1

β
(33)

Furthermore, from (64) it follows that

H̄ = s̄Ȳ (34)

Next, we can solve the steady state aggregate resource constraint, (20), for consumption,

and write

C̄ = Ȳ (1− ḡ) (35)

Plugging in these steady state labor and consumption levels in the steady state version of

the optimal labor/consumption trade off gives

m̄c = w̄ =
s̄ηȲ η+σ(1− ḡ)σ(1 + τ̄ c)

1− τ̄ l
(36)

So that steady state output can be written as

Ȳ =

(
m̄c(1− τ̄ l)

s̄η(1− ḡ)σ(1 + τ̄ c)

) 1
η+σ

(37)

For the relative optimal price, we write (17) as

d̄ =

(
1− ωΠθ−1

1− ω

) 1
1−θ

(38)
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For price dispersion, we then write

s̄ =
(1− ω)

1− ωΠ̄θ
d̄−θ =

(1− ω)

1− ωΠ̄θ

(
1− ωΠθ−1

1− ω

) θ
θ−1

(39)

Evaluating (52) at the steady state gives

m̄c = d̄
θ − 1

θ

∑T
s=0 ω

sβsΠ̄s(θ−1)∑T
s=0 ω

sβsΠ̄s(θ)
=

(
1− ωΠθ−1

1− ω

) 1
1−θ θ − 1

θ

(1− ωβΠθ)(1− (ωβΠθ−1)T )

(1− (ωβΠθ)T )(1− ωβΠθ−1)

(40)

Firm profits we can write as

Ξ̄ = (1− w̄s̄)Ȳ (41)

Then we turn to the government budget constraint. In steady state (19) reduces to

βb̄

Π̄
= (1 + τ̄ c)ḡ − τ̄ lw̄s̄− τ̄ c +

b̄

Π̄
, (42)

which gives

b̄ = Π̄
(τ̄ lw̄s̄+ τ̄ c − (1 + τ̄ c)ḡ)

1− β
, (43)

Steady state government spending and taxes must be equal to their steady state dis-

cretionary parts

D̄S = ḡ, ¯DLT = τ̄ l, ¯DCT = τ̄ c.

Finally we, assume that households value real bond holdings relative to consumption

such that, in steady state they make optimal decisions. It then follows from (9) and (43)

that

Λ =
1

Π̄

(
b̄

1− ḡ

)σ
= Π̄σ−1

(
(τ̄ lw̄s̄+ τ̄ c − (1 + τ̄ c)ḡ)

(1− ḡ)(1− β)

)σ
. (44)
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B Log-linearized model

In this Section, I log-linearize the model equations around the steady state.

B.1 Households

The log linearized optimality conditions of the households (including budget constraints)

are given by

Ĉi
τ = Ĉi

τ+1 −
1

σ
(iτ − π̂τ+1 + ξτ+1 − ξτ −

τ̃ cτ+1 − τ̃ cτ
1 + τ̄ c

), τ = t, t+ 1, ...t+ T − 1 (45)

b̃it+T+1 = b̄Ĉi
t+T +

b̄

σ

τ̃ ct+T
1 + τ̄ c

+
b̄

σ
Ei
tit+T +

b̄

σ
(ξt+T+1 − ξt+T ), (46)

ηĤ i
τ = −σĈi

τ −
τ̃ cτ

1 + τ̄ c
− τ̃ lτ

1− τ̄ l
+ ŵτ + ξτ , τ = t, t+ 1, ...t+ T (47)

b̃iτ+1 =
w̄s̄Π̄

β
((1− τ̄ l)(Ei

tŵτ + Ĥ i
τ )− Ei

t τ̃
l
τ ) +

1

β
b̃iτ + b̄(̂iτ −

1

β
Ei
t π̂τ ) +

Ξ̄Π̄

Ȳ β
Ei
tΞ̂τ

− (1− ḡ)Π̄

β

(
(1 + τ̄ c)Ĉi

τ + τ̃ cτ

)
, τ = t, t+ 1, ...t+ T (48)

where it is used that H̄ = s̄Ȳ and C̄
Ȳ

= 1− ḡ

Iterating the budget constraint T periods, and using the first order conditions of the

household, the following equation can be derived, that describes a households optimal

consumption decision in period t.
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(
βT+1b̄+

(
σ

η
w̄s̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
Π̄

1− βT+1

1− β

)
Ĉi
t =

b̃it + w̄s̄Π̄(1− τ̄ l)
T∑
s=0

βs
(

(1 +
1

η
)(Ei

tŵt+s −
Ei
t τ̃
l
t+s

1− τ̄ l
) +

1

η
(Ei

tξt+s −
Ei
t τ̃
c
t+s

1 + τ̄ c
)

)
+

Ξ̄Π̄

Ȳ

T∑
s=0

βs(Ei
tΞ̂t+s)

−
(
σ

η
w̄s̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
Π̄

T∑
s=1

βs
s−1∑
j=0

1

σ
(Ei

tit+j − Ei
t π̂t+j+1)

−
(
σ

η
w̄s̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
Π̄

T∑
s=1

βs
(

1

σ
(Ei

tξt+s − Ei
tξt −

Ei
t τ̃
c
t+s − Ei

t τ̃
c
t

1 + τ̄ c
)

)

− (1− ḡ)Π̄
T∑
s=0

βs
(
Ei
t τ̃
c
t+s

)
+ b̄

T∑
s=0

βs(βEi
t ît+s − Ei

t π̂t+s) (49)

− βT+1b̄
T−1∑
j=0

1

σ
(Ei

tit+j − Ei
t π̂t+j+1)− βT+1 b̄

σ
Ei
tit+T − βT+1 b̄

σ
(Ei

tξt+T+1 − Ei
tξt+T )− βT+1 b̄

σ

Ei
t τ̃
c
t+T

1 + τ̄ c

Aggregating this equation over all households yields an expression for aggregate con-

sumption as a function of aggregate expectations about aggregate variables, only.

(
βT+1b̄+

(
σ

η
w̄s̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
Π̄

1− βT+1

1− β

)
Ĉt =

b̃t + w̄s̄Π̄(1− τ̄ l)
T∑
s=0

βs
(

(1 +
1

η
)(Ētŵt+s −

Ētτ̃
l
t+s

1− τ̄ l
) +

1

η
(Ētξt+s −

Ētτ̃
c
t+s

1 + τ̄ c
)

)
+

Ξ̄Π̄

Ȳ

T∑
s=0

βs(ĒtΞ̂t+s)

−
(
σ

η
w̄s̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
Π̄

T∑
s=1

βs
s−1∑
j=0

1

σ
(Ētit+j − Ētπ̂t+j+1)

−
(
σ

η
w̄s̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
Π̄

T∑
s=1

βs
(

1

σ
(Ētξt+s − Ētξt −

Ētτ̃
c
t+s − Ētτ̃ ct
1 + τ̄ c

)

)

− (1− ḡ)Π̄
T∑
s=0

βs
(
Ētτ̃

c
t+s

)
+ b̄

T∑
s=0

βs(βĒtît+s − Ētπ̂t+s) (50)

− βT+1b̄
T−1∑
j=0

1

σ
(Ētit+j − Ētπ̂t+j+1)− βT+1 b̄

σ
Ētit+T − βT+1 b̄

σ
(Ētξt+T+1 − Ētξt+T )− βT+1 b̄

σ

Ētτ̃
c
t+T

1 + τ̄ c
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B.2 Firms

Multiplying (15) by
ξt(C

j
t )−σ

(1+τct )Pt

p∗t (j)1+θ

1−θ gives

Ẽj
t

T∑
s=0

ωsβs
ξt+s

1 + τ ct+s

(
Cj
t+s

)−σ Yt+s
Pt+s

[
p∗t (j)P

θ
t+s −

θ

θ − 1
mct+sP

1+θ
t+s

]
= 0, (51)

This can be written as

p∗t (j)

Pt
Ẽj
t

T∑
s=0

ωsβs
ξt+s

1 + τ ct+s

(
Cj
t+s

)−σ (Pt+s
Pt

)θ−1

Yt+s = (52)

θ

θ − 1
Ẽj
t

T∑
s=0

ωsβs
ξt+s

1 + τ ct+s

(
Cj
t+s

)−σ (Pt+s
Pt

)θ
Yt+smct+s,

Finally, we can eliminate prices, and instead write the equation in terms of dt(j) =
p∗t (j)

Pt

and in terms of inflation as

dt(j)Ẽ
j
t

T∑
s=0

ωsβs
ξt+s

1 + τ ct+s

(
Cj
t+s

)−σ( s∏
j=1

Πt+j

)θ−1

Yt+s = (53)

θ

θ − 1
Ẽj
t

T∑
s=0

ωsβs
ξt+s

1 + τ ct+s

(
Cj
t+s

)−σ( s∏
j=1

Πt+j

)θ

Yt+smct+s,

Log linearizing (53) gives

d̂t(j) =Ẽj
t

T∑
s=0

(
(c1)s

s1

− (c2)s

s2

)(
Ŷt+s − σĈt+s −

τ̃ ct+s
1 + τ̄ c

+ ξ̂t+s

)
+ Ẽj

t

T∑
s=0

(c1)s

s1

m̂ct+s (54)

+ Ẽj
t

T∑
s=1

(
θ

(c1)s

s1

− (θ − 1)
(c2)s

s2

) s∑
i=1

π̂t+i,

with

c1 = ωβΠ̄θ (55)

c2 = ωβΠ̄θ−1 (56)
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s1 =
1−

(
ωβΠ̄θ

)T+1

1− ωβΠ̄θ
(57)

s2 =
1−

(
ωβΠ̄θ−1

)T+1

1− ωβΠ̄θ−1
(58)

Aggregating (54) yields

∫ 1

0

d̂t(j)dj =Ēt

T∑
s=0

(
(c1)s

s1

− (c2)s

s2

)(
Ŷt+s − σĈt+s −

τ̃ ct+s
1 + τ̄ c

+ ξ̂t+s

)
+ Ēt

T∑
s=0

(c1)s

s1

m̂ct+s

(59)

+ Ēt

T∑
s=1

(
θ

(c1)s

s1

− (θ − 1)
(c2)s

s2

) s∑
i=1

π̂t+i,

Next, I log linearize (17), and use this to write inflation as

π̂t =
1− ωΠ̄θ−1

ωΠ̄θ−1

∫ 1

0

d̂t(j)dj. (60)

Plugging in (59) gives

π̂t =
1− ωΠ̄θ−1

ωΠ̄θ−1

[
Ēt

T∑
s=0

(
(c1)s

s1

− (c2)s

s2

)(
Ŷt+s − σĈt+s −

τ̃ ct+s
1 + τ̄ c

+ ξ̂t+s

)
+ Ēt

T∑
s=0

(c1)s

s1

m̂ct+s

(61)

+ Ēt

T∑
s=1

(
θ

(c1)s

s1

− (θ − 1)
(c2)s

s2

) s∑
i=1

π̂t+i

]

B.3 Final equations

To complete the model I first log-linearize the government budget constraint, (19), to

b̃t+1 =
Π̄

β
g̃t −

w̄s̄Π̄

β
(τ̄ l(ŵt + Ĥt) + τ̃ lt )−

Π̄

β
(1− ḡ)(τ̄ cĈt + τ̃ ct ) +

1

β
b̃t + b̄(̂it −

1

β
π̂t), (62)
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Next, we can log linearize the market clearing condition, (20)

Ŷt = (1− ḡ)Ĉt + g̃t, (63)

Next, I turn to aggregate labor

Ht =

∫ 1

0

Ht(j)dj =

∫ 1

0

Yt(j)dj =

∫ 1

0

(
Pt(j)

Pt

)−θ
djYt = stYt, (64)

where st =
∫ 1

0

(
Pt(j)
Pt

)−θ
dj is price dispersion in the economy in period t. Linearizing this

equation and aggregating (47) wages and marginal costs can be written as

m̂ct = ŵt = ηĤt + σĈt +
τ̃ ct

1 + τ̄ c
+

τ̃ lt
1− τ̄ l

− ξt (65)

= (η +
σ

1− ḡ
)Ŷt − σ

g̃t
1− ḡ

+
τ̃ ct

1 + τ̄ c
+

τ̃ lt
1− τ̄ l

+ ηŝt − ξt

Because all prices in the economy where set at different dates by the Calvo mechanism,

price dispersion can be written as

st = (1− ω)

∫ 1

0

(
p∗t (j)

Pt

)−θ
dj + ω(1− ω)

∫ 1

0

(
p∗t−1(j)

Pt

)−θ
dj + ω2(1− ω)

∫ 1

0

(
p∗t−2(j)

Pt

)−θ
dj + ...

= (1− ω)
∞∑
i=0

ωi
∫ 1

0

(
p∗t−i(j)

Pt

)−θ
dj (66)

We can therefore write price dispersion as

st = (1− ω)

∫ 1

0

(
p∗t (j)

Pt

)−θ
dj + ωΠθ

t (1− ω)
∞∑
i=0

ωi
∫ 1

0

(
p∗t−1−i(j)

Pt−1

)−θ
dj

= (1− ω)

∫ 1

0

dt(j)
−θdj + ωΠθ

tst−1 (67)

Price dispersion is log linearized to

ŝt = −θ(1− ωΠ̄θ)

∫ 1

0

d̂t(j)dj + θωΠ̄θπ̂t + ωΠ̄θŝt−1 (68)
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Using (60), this can be written as

ŝt =
θωΠ̄θ−1

1− ωΠ̄θ−1
(Π̄− 1)π̂t + ωΠ̄θŝt−1 (69)

Finally, we can write real aggregate firm profits as

Ξt =

∫ 1

0

Ξt(j)dj =

∫ 1

0

Yt(j)
Pt(j)

Pt
−mctYt(j)dj = (1−mctst)Yt, (70)

which can be log-linearized to

Ξ̂t = Ŷt −
s̄w̄

1− s̄w̄
(m̂ct + ŝt) . (71)

Using (20) in (50) results an expression for aggregate output.

Ŷt =
1

ρ
b̃t + gt + δ

T∑
s=0

βs((1− τ̄ l)Ētŵt+s − Ētτ̃ lt+s) +
(1− w̄s̄)Π̄

ρ

T∑
s=0

βs(ĒtΞ̂t+s) (72)

− µ
T∑
s=1

βs
s−1∑
j=0

(Ētit+j − Ētπ̂t+j+1) +
b̄

ρ

T∑
s=0

βs(βĒtît+s − Ētπ̂t+s)

− βT+1 b̄

σρ

T−1∑
j=0

(Ētit+j − Ētπ̂t+j+1)− βT+1 b̄

σρ
Ētit+T

+ δξξt − µξ
T∑
s=1

βs(Ētξt+s − ξt)− βT+1 b̄

σρ
(Ētξt+T+1 − Ētξt+T )

− δξ
1 + τ̄ c

τ̃ ct −
Π̄(1− ḡ)

ρ

T∑
s=0

βsĒtτ̃
c
t+s +

Π̄(1− ḡ)

ρσ

T∑
s=1

βs(Ētτ̃
c
t+s − Ētτ̃ ct )− βT+1 b̄

σρ

Ētτ̃
c
t+T

1 + τ̄ c

δ =
w̄s̄Π̄

ρ

η + 1

η
(73)

δξ =
1− βT+1

1− β
w̄s̄Π̄

ρ

1− τ̄ l

η
(74)

µ =
Π̄

ρ

(
w̄s̄

η
(1− τ̄ l) + (1 + τ̄ c)

1− ḡ
σ

)
(75)
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µξ =
Π̄

ρ
(1 + τ̄ c)

1− ḡ
σ

(76)

ρ =
1

1− ḡ

[
βT+1b̄+

(
σ

η
w̄s̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
Π̄

1− βT+1

1− β

]
(77)

I now assume that agents know, or have learned about the above relations between

aggregate variables (which hold in every period). Therefore, expectations about wages

and profits can be substituted for, using (65) and (71). This gives the following system

of 3 equations that, together with a specification of monetary and fiscal policy and price

dispersion, completely describe our model

(1− νy)Ŷt =
1

ρ
b̃t + gt + ντ

T∑
s=0

βs(Ētτ̂
l
t+s) + νg

T∑
s=0

βs(Ētĝt+s) + νy

T∑
s=1

βs(ĒtŶt+s)

+ νs

T∑
j=0

βj(Ētŝt+j)− µ
T∑
s=1

βs
s∑
j=1

(Ētit+j−1 − Ētπ̂t+j) +
b̄

ρ

T∑
s=0

βs(βĒtît+s − Ētπ̂t+s) (78)

− βT+1 b̄

σρ

T−1∑
j=0

(Ētit+j − Ētπ̂t+j+1)− βT+1 b̄

σρ
Ētit+T

+ δξξt + νξ

T∑
s=0

βsĒtξ̃t+s − µξ
T∑
s=1

βs(Ētξt+s − ξt)− βT+1 b̄

σρ
(Ētξt+T+1 − Ētξt+T )

− δξ
1 + τ̄ c

τ̃ ct + νc

T∑
s=0

βsĒtτ̃
c
t+s +

Π̄(1− ḡ)

ρσ

T∑
s=1

βs(Ētτ̃
c
t+s − Ētτ̃ ct )− βT+1 b̄

σρ

Ētτ̃
c
t+T

1 + τ̄ c

π̂t =Ēt

T∑
s=0

(κy1(c1)s + κy2(c2)s) Ŷt+s + κgĒt

T∑
s=0

(c2)sg̃t+s + κsĒt

T∑
s=0

(c1)sŝt+s (79)

+ κcĒt

T∑
s=0

(c2)sτ̃ ct+s + κτ Ēt

T∑
s=0

(c1)sτ̃ lt+s + Ēt

T∑
s=1

(κπ1(c1)s + κπ2(c2)s)
s∑
i=1

π̂t+i

+ κξĒt

T∑
s=0

(c2)sξ̂t+s
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b̃t+1 =
Π̄

β
g̃t −

Π̄

β
τ̄ c(Ŷt − g̃t)−

Π̄

β
(1− ḡ)τ̃ ct +

1

β
b̃t + b̄(̂it −

1

β
π̂t) (80)

− w̄s̄Π̄

β

[
τ̄ l
(

(1 + η +
σ

1− ḡ
)Ŷt − σ

g̃t
1− ḡ

+
τ̃ ct

1 + τ̄ c
+

τ̃ lt
1− τ̄ l

+ (1 + η)ŝt − ξt
)

+ τ̃ lt

]
,

with

νy =
(1− s̄w̄)Π̄

ρ
+

(
δ(1− τ̄ l)− s̄w̄Π̄

ρ

)
(η +

σ

1− ḡ
), (81)

νg =

(
s̄w̄Π̄

ρ
− δ(1− τ̄ l)

)
σ

1− ḡ
, (82)

ντ = − s̄w̄Π̄

ρ(1− τ̄ l)
, (83)

νs = − s̄w̄Π̄

ρ
(η + 1)τ̄ l, (84)

νξ =
s̄w̄Π̄

ρ
− δ(1− τ̄ l), (85)

νc = δ
1− τ̄ l

1 + τ̄ c
− s̄w̄Π̄

ρ(1 + τ̄ c)
− Π

ρ
(1− ḡ), (86)

κy1 =
1− ωΠ̄θ−1

ωΠ̄θ−1

1 + η

s1

(87)

κy2 = −1− ωΠ̄θ−1

ωΠ̄θ−1

1− σ
1−ḡ

s2

(88)

κg = −1− ωΠ̄θ−1

ωΠ̄θ−1

σ

(1− ḡ)s2

(89)

κs =
1− ωΠ̄θ−1

ωΠ̄θ−1

η

s1

(90)

κc =
1− ωΠ̄θ−1

ωΠ̄θ−1

1

(1 + τ̄ c)s2

(91)

κτ =
1− ωΠ̄θ−1

ωΠ̄θ−1

1

(1− τ̄)s1

(92)
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κπ1 =
1− ωΠ̄θ−1

ωΠ̄θ−1

θ

s1

(93)

κπ2 = −1− ωΠ̄θ−1

ωΠ̄θ−1

θ − 1

s2

(94)

κξ = −1− ωΠ̄θ−1

ωΠ̄θ−1

1

s2

(95)

B.4 Zero inflation target

In case of Π̄ = 0 the above model reduces to

(1− νy0)Ŷt =
1

ρ0

b̃t + gt + ντ0

T∑
s=0

βs(Ētτ̂
l
t+s) + νg0

T∑
s=0

βs(Ētĝt+s) + νy0

T∑
s=1

βs(ĒtŶt+s)

(96)

− µ0

T∑
s=1

βs
s∑
j=1

(Ētit+j−1 − Ētπ̂t+j) +
b̄

ρ0

T∑
s=0

βs(βĒtît+s − Ētπ̂t+s)

− βT+1 b̄

σρ0

T−1∑
j=0

(Ētit+j − Ētπ̂t+j+1)− βT+1 b̄

σρ0

Ētit+T

+ δξ0ξt + νξ0

T∑
s=0

βsĒtξ̃t+s − µξ0
T∑
s=1

βs(Ētξt+s − ξt)− βT+1 b̄

σρ0

(Ētξt+T+1 − Ētξt+T )

− δξ0
1 + τ̄ c

τ̃ ct + νc0

T∑
s=0

βsĒtτ̃
c
t+s +

(1− ḡ)

ρ0σ

T∑
s=1

βs(Ētτ̃
c
t+s − Ētτ̃ ct )− βT+1 b̄

σρ

Ētτ̃
c
t+T

1 + τ̄ c

π̂t =κ̃(η +
σ

1− ḡ
)

T∑
s=0

ωsβsÊtŶt+s −
κ̃σ

1− ḡ

T∑
s=0

ωsβsÊtg̃t+s (97)

+
κ̃

1 + τ̄ c

T∑
s=0

ωsβsÊtτ̃
c
t+s +

κ̃

1− τ̄ l
T∑
s=0

ωsβsÊtτ̃
l
t+s + κ̃

T∑
s=1

ωsβs
s∑

τ=1

Êtπ̂t+τ ,
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b̃t+1 =
1

β
g̃t −

τ̄ c

β
(Ŷt − g̃t)−

1− ḡ
β

τ̃ ct +
1

β
b̃t + b̄(̂it −

1

β
π̂t) (98)

− w̄

β

[
τ̄ l
(

(1 + η +
σ

1− ḡ
)Ŷt − σ

g̃t
1− ḡ

+
τ̃ ct

1 + τ̄ c
+

τ̃ lt
1− τ̄ l

− ξt
)

+ τ̃ lt

]
,

δ0 =
w̄

ρ0

η + 1

η
, (99)

µ0 =
1

ρ0

(
w̄

η
(1− τ̄ l) + (1 + τ̄ c)

1− ḡ
σ

)
, (100)

δξ =
1− βT+1

1− β
w̄

ρ0

1− τ̄ l

η
(101)

µξ =
1

ρ0

(1 + τ̄ c)
1− ḡ
σ

(102)

ρ0 =
1

1− ḡ

[
βT+1b̄+

(
σ

η
w̄(1− τ̄ l) + (1 + τ̄ c)(1− ḡ)

)
1− βT+1

1− β

]
. (103)

νy0 =
1− w̄
ρ

+

(
δ(1− τ̄ l)− w̄

ρ0

)
(η +

σ

1− ḡ
), (104)

νg0 =

(
w̄

ρ0

− δ0(1− τ̄ l)
)

σ

1− ḡ
, (105)

ντ0 = − w̄

ρ0(1− τ̄ l)
, (106)

νξ0 =
w̄

ρ0

− δ0(1− τ̄ l), (107)

νc0 = δ0
1− τ̄ l

1 + τ̄ c
− w̄

ρ0(1 + τ̄ c)
− (1− ḡ)

ρ0

, (108)

κ̃ =
(1− ω)(1− ωβ)

ω(1− ωT+1βT+1)
. (109)
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C Model under infinitely forward looking expecta-

tions

C.1 Output

When we let the planning horizon, T, go to infinity (72) can be written as

Ŷt =
1

ρ
b̃t + gt + δ

∞∑
s=0

βs((1− τ̄ l)((1− α)EF
t ŵt+s + αEb

t ŵt+s)− (1− α)EF
t τ̃

l
t+s − αEb

t τ̃
l
t+s)+

(1− w̄s̄)Π̄
ρ

∞∑
s=0

βs((1− α)EF
t Ξ̂t+s + αEb

t Ξ̂t+s) +

(
δξ +

µξβ

1− β

)
ξt − µξ

∞∑
s=1

βs((1− α)EF
t ξ̂t+s + αEb

t ξ̂t+s)

−
(

δξ
1 + τ̄ c

+

(
β

(1− β)σ
+ 1

)
1− ḡ
ρ

Π̄

)
τ̃ ct +

(
1

σ
− 1

)
1− ḡ
ρ

Π̄
∞∑
s=1

βs((1− α)EF
t τ̃

c
t+s + αEb

t τ̃
c
t+s)

− µβ

1− β

∞∑
s=0

βs(((1− α)EF
t ît+s + αEb

t ît+s)− ((1− α)EF
t π̂t+s+1 + αEb

t π̂t+s+1))

+
b̄

ρ

∞∑
s=0

βs(β((1− α)EF
t ît+s + αEb

t ît+s)− ((1− α)EF
t π̂t+s + αEb

t π̂t+s))

Leading this equation 1 period and taking forward looking expectations gives

EF
t Ŷt+1 = δ

∞∑
s=1

βs−1((1− τ̄ l)((1− α)EF
t ŵt+s + αEF

t E
b
t+1ŵt+s)− (1− α)EF

t τ̃
l
t+s − αEF

t E
b
t+1τ̃

l
t+s)+

EF
t gt+1 +

1

ρ
b̃t+1 +

(1− w̄s̄)Π̄
ρ

∞∑
s=1

βs−1((1− α)EF
t Ξ̂t+s + αEF

t E
b
t+1Ξ̂t+s)

+

(
δξ +

µξβ

1− β

)
EF
t ξ̂t+1 − µξ

∞∑
s=2

βs−1((1− α)EF
t ξ̂t+s + αEF

t E
b
t+1ξ̂t+s)

−
(

δξ
1 + τ̄ c

+

(
β

(1− β)σ
+ 1

)
1− ḡ
ρ

Π̄

)
EF
t τ̃

c
t+1 +

(
1

σ
− 1

)
1− ḡ
ρ

Π̄
∞∑
s=2

βs−1((1− α)EF
t τ̃

c
t+s + αEF

t E
b
t+1τ̃

c
t+s)

− µβ

1− β

∞∑
s=1

βs−1(((1− α)EF
t ît+s + αEF

t E
b
t+1ît+s)− ((1− α)EF

t π̂t+s+1 + αEF
t E

b
t+1π̂t+s+1))

+
b̄

ρ

∞∑
s=1

βs−1(β((1− α)EF
t ît+s + αEF

t E
b
t+1ît+s)− ((1− α)EF

t π̂t+s + αEF
t E

b
t+1π̂t+s))
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Under the assumption (maintained throughout the main body of the paper) that

EF
t E

b
t+1x̂t+s = Eb

t x̂t+s for 1 < s ≤ T , and plugging in backward-looking expectations

and wages and profits, output can be written recursively as

(1− νy)Ŷt = (β − αβνy)Ef
t Ŷt+1 + αβd2νyŶt−1 +

1

ρ
(b̃t − βb̃t+1) + (1 + νg)g̃t − (β + αβνg)E

f
t g̃t+1

+ αβd2νgg̃t−1 + ντ (τ̃
l
t + αβ(d2τ̃ lt−1 − E

f
t τ̃

l
t+1)) + νs(ŝt + αβ(d2ŝt−1 − Ef

t ŝt+1))

+

(
δξ +

µξβ

1− β
+ νξ

)
ξ̂t −

(
βδξ + β

µξβ

1− β
+ µξβ(1− α) + αβνξ

)
Ef
t ξ̂t+1

−
(

δξ
1 + τ̄ c

+

(
β

(1− β)σ
+ 1

)
1− ḡ
ρ

Π̄− νc
)
τ̃ ct +

((
1

σ
− 1

)
1− ḡ
ρ

Π̄ + νc

)
αβd2τ̃ ct−1

+ β

(
δξ

1 + τ̄ c
+

(
β

(1− β)σ
+ 1

)
1− ḡ
ρ

Π̄ +

(
1

σ
− 1

)
1− ḡ
ρ

Π̄(1− α)− ανc
)
Ef
t τ̃

c
t+1

+ (
µβ

1− β
(1− α) + αβ

b̄

ρ
)EF

t π̂t+1 + (
µβ

1− β
αd2 − αβ b̄

ρ
d2)π̂t−1 −

b̄

ρ
π̂t + (

b̄β

ρ
− µβ

1− β
)(̂it + αβ(d2ît−1 − Ef

t ît+1))

where I follow the assumption that all agents can observe contemporaneous variables when

making their decision (but not yet when forming expectations), and the assumption that

backward-looking agents do not anticipate future shocks.

C.2 Inflation

When T goes to infinity, (79) can be written as

π̂t =ψt + κy1

∞∑
s=0

(c1)s((1− α)EF
t Ŷt+s + αEb

t Ŷt+s) (110)

κs

∞∑
s=0

(c1)s((1− α)EF
t ŝt+s + αEb

t ŝt+s) + κτ

∞∑
s=0

(c1)s((1− α)EF
t τ̃t+s + αEb

t τ̃t+s)

+
κπ1

1− c1

∞∑
s=1

(c1)s((1− α)EF
t π̂t+s + αEb

t π̂t+s)

48



with

ψt =κy2

∞∑
s=0

(c2)s((1− α)EF
t Ŷt+s + αEb

t Ŷt+s) + κg

∞∑
s=0

(c2)s((1− α)EF
t g̃t+s + αEb

t g̃t+s)

(111)

+ κc

∞∑
s=0

(c2)s((1− α)EF
t τ̃

c
t+s + αEb

t τ̃
c
t+s) + κξ

∞∑
s=0

(c2)s((1− α)EF
t ξ̂t+S + αEb

t ξ̂t+s)

+
κπ2

1− c2

∞∑
s=1

(c2)s((1− α)EF
t π̂t+s + αEb

t π̂t+s)

Writing one period ahead an taking forward-looking expectations gives

EF
t π̂t+1 =EF

t ψt+1 + κy1

∞∑
s=1

(c1)s−1((1− α)EF
t Ŷt+s + αEF

t E
b
t+1Ŷt+s) (112)

+ κs

∞∑
s=1

(c1)s−1((1− α)EF
t ŝt+s + αEF

t E
b
t+1ŝt+s) + κτ

∞∑
s=1

(c1)s−1((1− α)EF
t τ̃t+s + αEF

t E
b
t+1τ̃t+s)

+
κπ1

1− c1

∞∑
s=2

(c1)s−1((1− α)EF
t π̂t+s + αEF

t E
b
t+1π̂t+s)

EF
t ψt+1 =κy2

∞∑
s=1

(c2)s−1((1− α)EF
t Ŷt+s + αEb

t Ŷt+s) + κg

∞∑
s=1

(c2)s−1((1− α)EF
t g̃t+s + αEb

t g̃t+s)

+ κc

∞∑
s=1

(c2)s−1((1− α)EF
t τ̃

c
t+s + αEb

t τ̃
c
t+s) + κξ

∞∑
s=1

(c2)s−1((1− α)EF
t ξ̂t+s + αEb

t ξ̂t+s)

+
κπ2

1− c2

∞∑
s=2

(c2)s−1((1− α)EF
t π̂t+s + αEb

t π̂t+s) (113)

Plugging in expectations of backward-looking agents we can write

π̂t =c1E
F
t π̂t+1 + ψt − c1E

F
t ψt+1 + κy1(Ŷt + αc1(d2Ŷt−1 − Ef

t Ŷt+1)) (114)

κs(ŝt + αc1(d2ŝt−1 − Ef
t ŝt+1)) + κτ (τ̃

l
t + αc1(d2τ̃ lt−1 − E

f
t τ̃

l
t+1))

+
c1κπ1

1− c1

((1− α)EF
t π̂t+1 + αEb

t π̂t+1)
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and

ψt =c2E
F
t ψt+1 + κy2(Ŷt + αc2(d2Ŷt−1 − Ef

t Ŷt+1)) (115)

+ κg(g̃t + αc2(d2g̃t−1 − Ef
t g̃t+1)) + κc(τ̃

c
t + αc2(d2τ̃ ct−1 − E

f
t τ̃

c
t+1))

+
c2κπ2

1− c2

((1− α)EF
t π̂t+1 + αEb

t π̂t+1) + κξ(ξ̂t − αc2E
f
t ξ̂t+1)

C.3 Fully rational expectations

Now, I consider the robustness of the assumption that forward-looking agents do not

anticipate how backward-looking agents will revise their expectations in future periods.

In case of an infinite planning horizon, forward-looking agents become fully rational when

they take account of how backward-looking agents will revise their expectations.

Following similar steps as above, output and inflation can then be written recursively

as

(1− z1νy)Ŷt = (β − αβνy)Ef
t Ŷt+1 + z2νyŶt−1 +

1

ρ
(b̃t − βb̃t+1) + (1 + z1νg)g̃t − (β + αβνg)E

f
t g̃t+1

+ z2νgg̃t−1 + ντ (z1τ̃
l
t + z2τ̃

l
t−1 − αβE

f
t τ̃

l
t+1) + νs(z1ŝt + z2ŝt−1 − αβEf

t ŝt+1))

+

(
δξ +

µξβ

1− β
+ νξ

)
ξ̂t −

(
βδξ + β

µξβ

1− β
+ µξβ(1− α) + αβνξ

)
Ef
t ξ̂t+1

−
(

δξ
1 + τ̄ c

+

(
β

(1− β)σ
+ 1

)
1− ḡ
ρ

Π̄ + α
β2d2

1− βd

(
1

σ
− 1

)
1− ḡ
ρ

Π̄− z1νc

)
τ̃ ct

+ β

(
δξ

1 + τ̄ c
+

(
β

(1− β)σ
+ 1

)
1− ḡ
ρ

Π̄ +

(
1

σ
− 1

)
1− ḡ
ρ

Π̄(1− α)− ανc
)
Ef
t τ̃

c
t+1

+
µβ

1− β
((1− α)EF

t π̂t+1 +
αd2

1− βd
π̂t−1 −

αβd2

1− βd
π̂t)−

b̄

ρ
(z1π̂t + z2π̂t−1 − αβEf

t π̂t+1)

+ (
b̄β

ρ
− µβ

1− β
)(z1ît + z2ît−1 − αβEf

t ît+1) +

((
1

σ
− 1

)
1− ḡ
ρ

Π̄ + νc

)
z2τ̃

c
t−1, (116)
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and

π̂t =c1E
F
t π̂t+1 + ψt − c1E

F
t ψt+1 + κy1(z3Ŷt + z4Ŷt−1 − αc1E

f
t Ŷt+1) (117)

κs(z3ŝt + z4ŝt−1 − αc1E
f
t ŝt+1) + κτ (z3τ̃

l
t + z4τ̃

l
t−1 − αc1E

f
t τ̃

l
t+1)

+
c1κπ1

1− c1

((1− α)EF
t π̂t+1 +

αd2

1− c1d
π̂t−1 −

αc1d
2

1− c1d
π̂t)

With,

ψt =c2E
F
t ψt+1 + κy2(z5Ŷt + z6Ŷt−1 − αc2E

f
t Ŷt+1) (118)

+ κg(z5g̃t + z6g̃t−1 − αc2E
f
t g̃t+1) + κc(z5τ̃

c
t + z6τ̃

c
t−1 − αc2E

f
t τ̃

c
t+1)

+
c2κπ2

1− c2

((1− α)EF
t π̂t+1 +

αd2

1− c2d
π̂t−1 −

αc2d
2

1− c2d
π̂t) + κξ(ξ̂t − αc2E

f
t ξ̂t+1),

z1 = 1− αβ2d2

1− βd
(119)

z2 =
αβd2

1− βd
(120)

z3 = 1− αc2
1d

2

1− c1d
(121)

z4 =
αc1d

2

1− c1d
(122)

z5 = 1− αc2
2d

2

1− c2d
(123)

z6 =
αc2d

2

1− c2d
(124)

D Coefficient of mean reversion in expectations of

backward-looking agents.

The length of liquidity traps not only depends on how many backward-looking agents

there are in the economy and on their planning horizon, but also on how persistent these
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Figure 10: Length of liquidity trap in case of a lower auto-regressive coefficient in backward-
looking expectations of d = 0.5 for different fractions of backward-looking agents
(x-axis, ranging from 0 to 1) and different sizes of the (non-persistent) negative
preference shock (y-axis, ranging from 0.04 to 0.3). The different panels correspond
to different planning horizons. Darker color shades indicate a longer duration of the
liquidity trap. The fully white areas in the bottom 4 panels indicate liquidity traps
of infinite length with ever decreasing inflation and output (deflationary spirals).

agents expect variables to be. Under the benchmark calibration backward-looking agents

have an auto-regressive coefficient in their expectations of 0.85. When this coefficients is

reduced, the following happens in a liquidity trap. Backward-looking agents expect faster

mean reversion towards the target steady state and expect the situation of low output and

inflation not to last too long. This causes them to reduce consumption and prices less, so

that inflation and output will indeed recover faster. This is illustrated in Figure 10, where

the auto-regressive coefficient in expectations is reduced to 0.5. Liquidity traps now last

at most 2 periods, even for large planning horizons. Deflationary spirals now do not arise.

When on the other hand backward-looking agents expect lower mean reversion, they

reduce prices and consumption more in a liquidity trap, causing the liquidity trap to last

longer, and increasing the risk of falling in a deflationary spiral. Figure 11 depicts the

extreme case of an auto-regressive coefficient in expectations of 1 so that in a liquidity trap
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Figure 11: Length of liquidity trap in case of a lower auto-regressive coefficient in backward-
looking expectations of d = 1 for different fractions of backward-looking agents
(x-axis, ranging from 0 to 1) and different sizes of the (non-persistent) negative
preference shock (y-axis, ranging from 0.04 to 0.3). The different panels correspond
to different planning horizons. Darker color shades indicate a longer duration of the
liquidity trap. The fully white areas in the bottom 4 panels indicate liquidity traps
of infinite length with ever decreasing inflation and output (deflationary spirals).

backward-looking agents expect the liquidity trap to continue for all the periods within

their planning horizon. Now deflationary spirals arise even when the fraction of backward-

looking agents is not that large or when the planning horizon is small.

Note tough, that the qualitative result that large planning horizons lead to longer

liquidity traps and more deflationary spirals still holds, also for different values of the auto-

regressive coefficient in expectations. However, when the the auto-regressive coefficient is

reduced, differences between horizons become smaller, while they become more pronounced

as the the auto-regressive coefficient in expectations is increased.
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