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Abstract— Stochastic models of biological networks are well; . ,...,S;, are calledproducts and both reactants and
established in systems biology, where the computational treatmeniphducts aremolecular speciesSuch a chemical equation

such models is often focused on the solution of the so-called chemi .
master equation via stochastic simulation algorithms. In contr 8st resses that the left hand side of the arrow can be trans-

to this, the development of storage-efficient model representatid@§med to the right hand side of the arrow. Complex chemical
that are directly suitable for computer implementation has receivpdocesses are given by sets of such reactions. Although the
significantly less attention. Instead, a model is usually describgghichiometric coefficients specify the necessary quastivf

in terms of a stochastic process or a "higher-level paradigm” wi : : -
graphical representation such as e.g. a stochastic Petri net. A serio lgstances of each molecular species, (1) basically Besaal

problem then arises due to the exponential growth of the model's stiialitative or functional relationship. However, for a ofieal
space which is in fact a main reason for the popularity of stochastieaction to occur, typically several conditions on tempes

simulation since simulation suffers less from the state space explosis¥gssure, or concentration must hold. These are usually ind
than non-simulative numerical solution techniques. In this paper w

present transition class models for the representation of biologicgted by a‘?'d'T‘g information above Qr bel-ow the a”‘?‘,’v and
network models, a compact mathematical formalism that circumveigld quantitative and temporal relationships often given

state space explosion. Transition class models can also serveteams ofrates The scientific branch that studies such rates of
an interface between different higher level modeling paradigmshemical reactions is callechemical kinetics

stochastic processes and the implementation coded in a programmingyiec .o+ types of computational mathematical models for
language. Besides, the compact model representation provides the

opportunity to apply non-simulative solution techniques thereby prd1€ description of the quantitgtive behaviour of .s.ystemmﬁ.ld
serving the possible use of stochastic simulation. lllustrative example¢ chemical processes exist and the specific meaning of

of transition class representations are given for an enzyme-catalyzgg¢es depends on the chosen model type. Though motivated
substrate conversion and a part of the bacteriophalgsis/lysogeny by different viewpoints the model types and thus the rates
pathway. L )
are of course intimately related which should not be too

'surprising since they represent the same type of systems.
A comprehensive treatment of different computational nhode
I. INTRODUCTION types can be fo'un.d in'[2]. . '
. . - . Models are distinguished in terms of their states and state
Biological network models significantly suffer from their . h : f llecti

. hich is due to the high complexity an(g:anges téansitiong where a state consists of a collection
enormous  size, w variables that sufficiently well represents the relevant

. . . . 0
Itljvely mter(taut:u%ns (I)f mvo(ljved Imolecrle; ’ tML:]Ch eﬁortv\;afparameters of the original system at any time. The set of
een spent fo develop and apply analysis techniques, VEnergg states, also referred to as thtate spacemay be either

redupmg the model size or, more ;peuﬂcally, reducing tqﬁscrete, meaning only a countable number of states that can
required computer storage by providing compact formal rho

descrivtions has received far | ttention. As stated e mapped to a subset of the natural numbérsr the state
ESCTIptions has Tecelved far 1ess attention. As state bl space may be continuous. Both in discrete and continuotes sta
the focus of current modeling tools is on simulation, but elod o o

: . . i L pace models the state transitions may occur determaiigtic
development is a highly iterative process which is cur;entF

tochastically. F I time th del t f choice i
only partly supported. Modelers will often end up havinorSOC astically. Tor a fong fime the model type of choice In

. . . Yomputational systems biology was a deterministic one with
many different versions of one model, probably in a numb%r b y o

. ontinuous state space, based on the law of mass action and
of different formats. ; ) . )
. . expressed in terms athemical rate equationteading to a
The fundamental rule of a chemical reaction between . . . ) .
S _ system of nonlinear ordinary differential equations thiiémm
molecules is given by the stoichiometry o e
turns out to be quite difficult to solve.
— 841 Sigis + 80,5, (1) The stochastic approach [8], motivated by the observation
that biochemical reactions occur randomly, leads to discre
state Markov processes [7], [9], [20], or, equivalently in
other words, to continuous-time Markov chains [3], and it
CW- Sandga_nn is Wibh the Deparfthent gflnfOLm?JE?n ﬁystems. %Ig(i%p requires the solution of a system of difference-differainti
omputer clence, n|verS|ty (o) amberg, e irchenstr, B . . . ..
Bamberg, Germany (corresponding author, phone: +49 951 883; 28mail: equations, th&hem'?al master equationrhe rules derIng
werner.sandmann@wiai.uni-bamberg.de) the temporal evolution of the system can be stored in a
V. Wolf is with the Department of Mathematics and Computer Smen

University of Mannheim, A5 Bauteil B 119, D-68131 Mannheim,r@any 1Any model is a simplified abstraction of the real system and boitability
(email: wolf@informatik.uni-mannheim.de). of a model and the relevant parameters depend on the scope stuthe

Keywords— Computational Modeling, Biological Networks
Stochastic Models, Markov Chains, Transition Class Models

Si1Si1 + - Sim Si

m

with m,¢ € N, m < (¢, wheres,,...,s;, € N are
stoichiometric coefficientssS;,, ..., .S, are calledreactants
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matrix consisting of reaction rates. The model's state spagnly depends on the length of this interval and not on the
and thus the matrix dimension is determined by the numbiaterval endpoints (the specific start and end times). Thus,
of involved molecular species and the number of potentialiven a current system state, the next state in the system’s
present molecules of each species. Unfortunately, the stine evolution only depends on this current system state and
space size grows exponentially in the number of moleculaeither on the specific time nor on the history of reactioms th
species and in case of potentially infinitely many moleculded to the current state. Hence, the time evolution of théesys
it is even infinite. Thus, storage of the rate matrix is nas mathematically described by a stochastic pro¢ésg)):>o
suitable for models of complex biological networks. Likewi with N-dimensional state spac® C NV, and due to the just
chemical reaction equations given by the stoichiometrynate stated independence of time and history this stochastimegs
suitable for efficient modeling with regard to represewotain is a discrete-state Markov process, or equivalently in rothe
computers. words, a time-homogeneous continuous-time Markov chain
In this paper we adopt the stochastic approach and prese(€a&MC). That is, for alln € N andtg < t; < --- < t,
structured mathematical modeling formalism called tréosi
class model (TCM) that is particularly well suited for imple P(X(tn) = zn|X(tn-1) = Tp—1,..., X(to) = z0)
mentation purposes and moreover can serve as an interface = P (X(tn) = 2, X (tn-1) = ¥p-1) . 4

between different model types or model formats. The PaPPhe multidimensional discrete state spacef the CTMC can

Ist oLgar:}zed 3s|foll;)vt\’/_s.l Sgct:on t” gli\(/esthforn;all_ze:tlpdns e mapped to the natural numbétsaind the probability that a
stochastic models ot biological networks thereby Introngc ., o from staté € N to statej € N occurs within a time

terminology and notations and demonstrating the problem .

Hici d imol o Transiti | e’rmdl erval of lengthh > 0 is denoted byp;; (k). For all h > 0
eflicient storage and implementation. Transition class these state transition probabilities build a transitioolability

a;e mtroduceg |n. Selc\tllon III,.where we als? outline the%atrixz P(h) = (pi;(h))ijen. Note thatP(0) equals the unit
a_‘ vantages. .(.actlo.n . contains transmon.cass repmse atrix I, since no state transitions occur within a time interval
tions for specific biological networks, and finally Section \{)f length zero

concludes the paper. It is well known [3], [6], [13] that a CTMC with state
spaceS C NV is uniquely defined by an initial probability

distribution onS and atransition rate matrix also referred to

Stochastic interpretations of chemically reacting systemqinfinitesimal generator matrix = (¢;;): jen consisting of
date back to the 1960s [14]. A formulation on a physical bastir%nsition ratesq; ’
179

has been provided in [8] and later on rigorously derived in [9

The basic assumptions are that the system is kept welldtirre Q  lim P(h) - PO) _ . l(P(h) . G

and thermally equilibrated, meaning that a well stirred tomie h—0 h h—0 h

of N € N* molecular species, ..., Sy inside some fixed The relation of eaci(h) to Q and an explanation for the term

volume interact at constant temperature. In the followirg wnfinitesimal generator matris given by P(h) = exp(hQ).

give a brief description of the formal mathematical basis. In that wayQ generates the the transition probability matrices
by a matrix exponential function which is basically defined a

Il. STOCHASTIC MODELING OF BIOLOGICAL NETWORKS

where

A. Mathematical Model Description an infinite power series. Hence, all information on trapsiti
The system state at any time is described by a discréobabilities is covered by the single matr@, where in
random vector biological network modeling the transition ratgs correspond
to reaction rates.
X() = (X(),..., XN (1), ©) The temporal evolution of a CTMC can be described via
where for each specie,i € {1,..., N} andt > 0 a discrete a system of differential equations, the Kolmogorov forward

random variableX;(¢) describes the number ¢; molecules equations and the Kolmogorov and backward equations,,resp.
present at timg. The conditional transient (time dependent)n matrix notation given by

probability that the system is in staiec NV at timet, given o 9
that the system starts in an initial statgat timet,, is denoted 5 M =POQ, o Pl)=QP({), (6)
by

) _ P(X(H) = x B 3 which yields a system of differential equations for the siant
P (wlwo, to) = P (X (t) =2 | X(to) = o). ©)  state probabilities, in vector-matrix notation given by
The system state changes over time due to chemical reactions o
. . t) — ,®
between molecules of some species. Complex reaction sets ca P =P Q, (1)

be decomposed into elementary unidirectional reactiooh su . ) _
that each reaction takes the form (1), where additionally erep(t) denotes the vector of the transient state probabilities

reaction rate that determines the reaction speed or pmbabicorrespondmg to (_3)' The above eq_uat|ons are equwalethgto
is assigned to each reaction so-called thechemical master equatidi], [20], a term that is

The _rgactlon rates _are mdepen_de_nt of th(_e _tlme S_mce theA transition probability matrix is also called a stochastictrixameaning
probability that a reaction occurs within a specific timeiwtl that all entries are probabilities and all row sums equal one.



thus nothing else than a synonym for the general terms ussling systems the stochastic simulation algorithm is only
in the theory of stochastic processes [3], [6], [13], in jgatr one specific solution technique, and its popularity is mainl
Markov processes. justified by the difficulty of solving the differential equemns
Although the Kolmogorov differntial equations and thevith other techniques. Nevertheless, stochastic sinmidias
chemical master equation arise from a stochastic modet theumerous drawbacks, and in many application areas where
is no need to apply stochastic solution methods. In pagiculstochastic models are used, stochastic simulation is eften
there is a significant difference between a stochastic matt¢| referred to as a method of last resort.
a stochastic simulation although in the literature "thektstic One of the major drawbacks of stochastic simulation is
approach” and "the stochastic simulation algorithm” areiof the random nature of simulation results. Despite the faat th
taken as the same thing. In fact, as we have outlined abave, @illespie’s algorithm is termed exact, a stochastic simoita
stochastic approach leads to continuous-time Markov shaiten never be exact. Mathematically, it constitutes a $izdis
that may be analyzed by a large variety of solution techriguestimation procedure implying that the results are sulject
where stochastic simulation is only one of them. statistical uncertainty and in order to draw meaningful -con
clusions it is necessary to make statistically valid stateis
on the results. The exactness of Gillespie’s algorithm ig on

- . ) ~"in the sense that it takes full account of the fluctuationd an
Explicit algebraic solution of the Kolmogorov equationSyq rejations” [8] of reactions within a single simulationnr

or in the biosystems terminology of the chemical mastgf,y Gijlespie mentions that it is "necessary to make several
equation, is usually impossible, and several techniques g ation runs from time to the chosen time, all identical
been proposed for the numerical solution of Markov chaing, each other except for the initialization of the random
see e.g. [18]. Most of these techniques both in the genelper generator”. In fact the reliability of simulatiorsuits

context of Markov chains and in the specific application 19y,nq)y depends on a sufficiently large number of simuratio
biological systems aim to solve the above system of differeq,,5 “ang a proper determination of that number has to be
tial equation or a variant known d@okker-Planck equatian carefully done in terms of mathematical statistics.

An alternative approach to analytically cope with stocitast ¢, .hermore, stochastic simulation is inherently cosity.

mode!s of biological netwprks is by stochastic differehtiamany cases even a single simulation run is extremely compute
equations (SDE) that gre In term.s qf)lt:alculus ,(Wh'Ch IS time demanding and thus reducing the space complexity
also very popular e.g. in stochastic finance) equivalenhéo tcompared to numerical methods has to be paid by a significant

Fokker-Planck equation. increase of time complexity. Serious difficulties arise f t

The main problem that numerical solution techniques suffgfesence of multiple time scales or stiffness. Often agiprox
from is the enormous size of the state space that Orows,

5 - - ) ) tions are required to achieve simulation speed up, and as
exponentially in the dimensionality, a problem knownsé&te 5, iymediate consequence even the exactness in the sense
space explosianin particular, for biological networks the

! , , stated above gets lost. Thus, if a problem may be tackled both
state space grows exponentially in the number of involveg, chastic simulation and by numerical analysis, theeat

molecullar s.peci.es, which means that even a moderate numQ‘F‘(fuld be preferred. The difficulties in numerical analysis
pf speqes implies gxtremely huge state spaces that gm, Ofﬁ‘?ainly arise due to the state space explosion. Hence, it is
impossible to store in computers. In case of potentiallynitdi highly desirable to develop compact modeling formalisma th

molecular populations the resulting state space is evemit&fi .4er model representation and storage in a computei®ssi
Several advanced solution techniques have been develoaﬁg that yield to numerical analysis as well

to deal with the state space explosion problem for specific
models, most of them exploiting a special structure of the
transition rate matrix and partitioning the state spaceiétdy
approximate solutions, see e.g. [4], [18], [21] and refeesn  To avoid the problem of state space explosion, we use tran-
therein. Unfortunately, if the transition rate matrix dosst sition class models (TCMs), which are compact and strudture
have the assumed structure such approximation techniquedatrmal descriptions of Markov chains. They are originally
not work. motivated by queueing network state spaces and similarity
An alternative approach that suffers less from the stateesp®f state transitions in this context, but it turns out thagyth
explosion problem is stochastic simulation. As alreadiesta are also well suited for formalizing biochemically reagtin
the chemical master equation is equivalent to the Kolmogorsystems. It is not necessary, but possible, to generate the
equations. Likewise, the so-callestochastic simulation al- complete state space and the transition rate matrix etplici
gorithm by Gillespie [8], which is often used to solve theOnce a TCM has been developed, many different solution
chemical master equation is a straightforward applicatibn techniques, including stochastic simulation, can be appli
Monte Carlo simulation methods for Markov chains that are Algorithms have been developed to generate transitiors clas
known at the latest since the early 1950s, as indicated hy [6jodels automatically from formal Petri net and queueing net
[10], [15] and the references therein. Although often egdatwork descriptions [17], [19]. Hence, TCMs have the potdntia
with the stochastic approach to modeling biochemically rée serve as an interface between different model spectitsiti

B. Difficulties in Modeling and Analysis

IIl. TRANSITION CLASS MODELS



(queueing models, Petri nets, mixtures of them, amongsyman Definition 1: (Transition Class) A transition class (relative
others) and various solution methods. Different parts of ta some sefS) is a tripletr = (U, u, «) consisting of

model can be described by different modeling paradigms that, a setis,

may be on different levels of abstraction, e.g. parts arergiv . a functionu : YNS — S, whereVz € UNS : u(z) # ,
as queueing model, other parts as Petri net, some parts may

be specified as a Markov chain on the low abstraction level of, { a functiona : /NS — (0,1] in discrete time,

a stochastic process, others via structured stochasticratz a functiona : /NS — (0,00) in continuous time.

networks as recently done for biochemically reacting syste Fora:UNS — (0,1] we speak of a discrete transition class
in [21]. Transformation into a TCM then yields a unified mOdedDTC) and fora - le NS — (0,1] we speak of a continuous
description, which is moreover suitable for immediate totu transition class (CTC).

Fig. 1 illustrates how transition class models are integtat Next we give an interpretation for what is described by a

Wlthm. the dgvelop_m ent of an. |mplem§ntat|on for a sySteWansition class, and we introduce an appropriate terragyol
description, in particular showing their interface chéeac The setl contains states, e.g. describing a system rep-

resented by a model. These states may change when some
events (state transitions) occur. Therefore, we refet/tas
: the source state spacef 7. Note that we allowi/ \ S # 0,
Real-Life System which means,{ may contain some redundant (infeasible)
3 states. This makes formal model description much easier and
more efficient. Additionally, we emphasize that we need not
: explicitly specify the setS when defining concrete transition
Abstract High-Level Model(s) classes, and neither all elements of the source state spaee h
- to be enumerated nor have they to be stored completely.
The functionu gives the new state after a transition from
: one state to another state (which need not be containgd] in
Transition Class Model has occured. Therefore, we calthedestination state function
H (or target state functiopwhich is more familiar in some areas).
Note that from the definition of the destination state fumrti
: it immediately follows that the source state space of any
Implementational Model transition class does not contain absorbing states, bgesst
H where the system stays forever if once reached. In the déscre
case the definition additionally implies that state traosg
from a state to itself, so called self-loops, correspondong
Fig. 1. Integration of Transition Class Models within the dieling to positive Q|agonal .entrles in the tr_ansmon. p.robab|l|tytma
Implementation” Process when using classical Markov chain descriptions, need not to
be modeled explicitly as a transition class. Thus, an aaftifi
source of storage waste is eliminated.
A. Formal Definitions and Properties Finally, «(z) denotes for a DTC the probability and for a
£ TC the rate of such a transition from statdo stateu(x).
For DTC we callo thetransition probability functionand for
CTC we calla the transition rate functionWe point out, that

steady-state probabilities — probabilities for a systeredoi- o ’
librium — provide important insights and are thus of interes” Many cases, when transition classes are defined properly,

It is well known from the theory of stochastic processeS @ constant, i.e. it does not depend on the system staté, or a
(3], [6], [7], [13], [18], [20] that steady-state probatiiéis the worst it is a rather S|mplg function on the system state.
for continuous-time Markov chains can be derived via an NOW we are ready to give t.he formal deflqltlon Of, a
embedded discrete-time Markov chains. where state tiansit transition class model, both for discrete and continuome ti
occur only after discrete time steps according to transitio D€finition 2: (Transition Class Model, TCM)

probabilities, which is sometimes easier to analyze (dejpen Let T,:: ({71,...,7},y) be a pair 90”3'3“”9 of a S?t of
on the chosen solution technique). Accordingly, we providEdnsition classes; = (Ui, u;, a;),1 < @ < k and a feasible
definitions of transition class models for both the continsio Stat€y € SN (L U ... UlUy). ThenT is called acontinuous

time case and the discrete-time case. We follow the preserffasition class mode{CTCM), if each7; is a CTC; andT
tion in [16], where a formal definition of transition class dao S called adiscrete transition class mod¢DTCM), if eachr;

Although in systems biology the interest is usually i
transient state probabilities there are also relevantscabkere

els appeared for the first time. Essentially for the striezturS @ DTC, and
description is the notion of a transition class, which eeahis k k
to interpret and model state transition events efficiergly, VzesSn U Ui : Zl{meui}o‘i(m) <1 (8)

reactions in biological networks. =1 =l



If in inequality (8) for states: the condition < 1” holds, A. Enzyme-catalyzed Substrate Conversion

then there is a positive probability of a self-loopinand  ag the first example consider a representative system that

this probapility is exactly the difference to one. 'A'S we havgss heen also served as a reference example, e.g. verylyecent
stated earlier, self-loops are not modeled explicitly, are [4], [5], the enzyme-catalyzed substrate conversion
implicitly contained in the transition class model.

What has been gained compared to the usual Markov chain Sy + 5, N Sy 18 + S, 9)
description via a transition rate matrix? Typically, the rkta/ cz

chain state space grows exponentially, whereas the numbga substratesS, into a product S, via an enzyme-substrate

of transition classes grows only linearly in the number afomplexSs, catalyzed(accelerated) by an enzynfs.

molecular species. Moreover, it is possible to describekilar  |f we assume that initially (at time) there arezgo) enzyme

chains with infinite state space by a finite number of tramsiti molecules,ry’ substrate molecules, and no molecules of the

classes. Consider for example a potentially infinite numbehzyme-substrate complex and the product are present, then

of at least one of the involved molecular species. Then tigge maximum numbers of molecules §f and S; that can

source state spaces of course become infinite, but they ggnpresent at any timeare 3350), and for S, and S, they are

still be described by component characteristics meaning B Hence, the state space size of the corresponding Markov

characteristics of single molecular species. chain equal$S| = (Igo) +1)- (xéo) +1) which yields e.g. for
Intuitively, it seems clear, that Markov chains can b§§0) — 200 andarg]) — 3000 the size oR01-3001 ~ 6-10°. If

described as transition class models, and indeed it can B¢ do not have bounds for the initial molecule population it

formally proven, that each Markov chain can be describgdinfinite. In our representation we need only three tréorsit

by a TCM, and that each TCM can be interpreted as apfhssesr, , 73 even in case of an infinite state space:
thus describes a Markov chain [16]. Formally, a transitiop

class model is an abstract mathematical notation, which aet !

practical meaning and a relation to other modeling paradigm

only by interpreting its components. The interpretationaas

Markov chain thus yields in this sense a semantics of triansit

class models. Each is a transition class relative to some Set

without S explicitly given in the definition. This means, that2 = (U2, uz, az), where

a TCM implicitly contains the state space of the describede Us = {(21,...,24) : 23 > 0},

Markov chain. In particular, using TCMs does neither reguir o uy : N* — N4,

any numbering of states nor explicit enumeration of theestat = +— wua(x) = (21 + 1,22 + 1,23 — 1, 24),

space, and TCM can be stored very efficiently. e ap:N* SR, 70 ag(z) = coxs;
Obviously, TCMs both in continuous and in discrete time; = (43, u3, a3), where

can be simulated in a similar manner as Markov chains by, 14, — 14, = {(2y,...,24) : 23 > 0},

repeatedly generating trajectories, as e.g. in its easiedt us s N4 5 N4,

most straightforward way adopted by Gillespie in his steeha x> uz(x) = (21 + 1,20, 23 — 1,24 + 1),

tic simulation algorithm [8]. Again note that [8] is by nomesa | as :N* SR, 2 as(z) = cazs;

the first paper where direct Markov chain simulation appears

Moreover, although not specifically concerned with siniatat

= (Ul,ul,ozl), where
o Uy ={(x1,...,24) : 21,22 > 0},
(] 7.L12N4—>N4,
z—uy(x) =(x1 — Lz — 1,xs + 1, 24),
e a1 :N* =R, 2 ai(z) =cra179;

Obviously, the TCM provides a huge gain in storage re-

: . . . uirements and is well suited for immediate implementation
TCMs are well-suited for improved fast simulation method P

. . . n important point regarding computer implementationfiat t
that are far more advanced than the Gillespie algorithm a{hd P P g 9 - P P . .
. . . . . - e state space and the transition rate matrix of the uridgrly
its variants, for instance variance reduction techniqueset

: : . . Markov chain is implicitly coded by logical predicates and

on importance sampling [16]. Even more important with. : :
L ; . _simple functions that are both easy to implement.

transition class models there is no need to resort to sttichas

simulation since non-simulative numerical techniques loan

directly performed on TCMs. Hence, as a natural by-prodfict B- Lambda Bacteriophage

circumventing the problem of state space explosion, ti@nsi  In this example we develop a TCM model for a part of

class models open access to a much wider range of analyiis bacteriophage\ lysis/ lysogeny pathway. We focus on

methodologies. the Pr — Pryv Operator regions sharing several overlapping

operator sites. The expression of theepressor genel is a

well characterized autoregulated genetic network (sed11]

and the references therein). The mutant system has operator

sétps OR2 and OR3 where theCl dimeP, denoted byX»,

binds as a transcription factor either 1)@R2, 2) atOR3 or

IV. TRANSITION CLASS REPRESENTATIONS

We demonstrate how transition class representations
concrete biological networks look like by illustrating itav
example for an e_nzyme'cata_lyzed substrate conversion and Here, gene names start with lower case letters and the cornéisy
part of the bacteriophagg lysis/lysogeny pathway. proteins are denoted by upper case letters



3) at both sites. In case 1, i.&, binds atOR2, transcription stochastic models for biological networks. Transitionssla

is enhanced whereas binding@R3 (cases 2 and 3) inhibits models provide huge gains in computer storage requirements
transcription which means that the production of prot€in are well suited for implementation and may also serve as an
is turned off. Let D denote the DNA promotor site. Theinterface between different high level modeling paradigms
stoichiometry of the model is given in Table | and since thefdoreover, they open access to a wide range of analysis
are 13 different reaction types and 6 species its TCM modekthodologies that are not feasible when using classical
requires 13 transition classes afid= N°. We assume that in Markov process descriptions. Transition class repretienta

statex = (z1, z, ..
X, X5,D,DX5, .D)(;7 DX, X, arex; for X, x, for Xo, ...,
andzg for DX5Xs.

TABLE |
STOICHIOMETRY OF THE LYSISLYSOGENY SWITCH IN BACTERIOPHAGEN.

c1

2X = X dimerization
D+Xs = DX, binding 1)
D+X, == DX} binding 2)
DX+ Xo == DX>Xs  binding 3)
DX+ X, == DXX,  binding 3)

D = D+X slow transcription
X g degradation
DX, hER DX-> + X  enhanced transcriptiol

Then, for instance, reactionX <% X, is described by

transition classy = (U, u1, 1) Where
. Ul = {($1,1127...,.’L‘6) L > 2},
e uj: N6 — N6,
x—uy(x) = (r1 — 2,20 + 1,23, T4, x5, T¢)
e a7 : N6 R,
x— ap(x) = 2c121.

Since the population oD is at most one, the transition class g

of reactionD + X, = DX, is 7o = (Us, uz, az) Where
. Z/{Q = {(.’L‘l,l'27...,1'6) X > 0,563 = 1},
e U9 : NG — NG,
x = ug(x) = (21,29 — 1,0,24 + 1, 25, 26)
o (2! N6 — R,
x — ag(x) = cata.

ReactionD X, Xy % DX; + X, is described by transition

classts = (U3, u3, az) where
. Ug = {(.131,,732,...,1‘6) LT = 1},
o U3 : NG — NG,
x— ug(x) = (x1,22 + 1, 23,24, 25 + 1,0)
o (V3 : NG — R,
x+— as(z) = cs.

., z¢) the population sizes of the 6 speciefiave been illustrated for an enzyme-catalyzed substrate co

version and a part of the bacteriophagelysis/lysogeny
pathway. Ongoing research is concerned with improving and
extending already existing numerical solution techniqines
directly work with the transition class representation afsb
with advanced stochastic simulation algorithms for tramsi
class models.
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