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ABSTRACT

Stochastic simulation is in widespread use for analyzing
biological pathways. Due to the limited efficiency of a
straightforward direct implementation such as the Gille-
spie algorithm, various improvements and approximate al-
gorithms have been developed. For user-friendliness it is
important to have efficient implementations available in
software tools. Another important issue is the statistical
accuracy of simulation results in terms of variances, confi-
dence intervals, or related measures. We address the prob-
lem of computing such statistics for Dizzy, a software tool
that has been recommended in a recent study of the user-
friendliness of software tools. Therefore, a mathematical
framework for statistical output analysis of simulation re-
sults is provided, the need for statistics as well as the lack
of user support in actually obtaining such statistics with
Dizzy and other tools is emphasized, and recommenda-
tions for future extensions of software tools are given.

1. INTRODUCTION

In the discrete-state stochastic approach to coupled chem-
ical reactions, the system state is defined by the popu-
lation of all involved molecular speciesS1, . . . , Sd. The
time evolution is described by a continuous-time Markov
chain(X(t))t≥0 whereX(t) = (X1(t), . . . ,Xd(t)) and
Xi(t) is the number of molecules of speciesSi present at
time t. The Kolmogorov differential equations governing
the system dynamics are expressed via the chemical mas-
ter equation (CME), which is a system of ordinary differ-
ential equations (ODEs) where the variables are transient
(time-dependent) state probabilities. Since the CME is
usually difficult to solve for large or stiff models, stochas-
tic simulation is often applied to analyze biological path-
ways. Rather than directly solving the CME, realizations
of Markov chain trajectories (sample paths) are generated.
Stochastically exact trajectory generation is often referred
to as the Gillespie algorithm in the context of chemical
reactions as Gillespie [2, 3] introduced the terminology
of the CME and thereby proposed to use stochastic sim-
ulation for system analysis. However, direct simulation
where each single reaction is explicitly simulated is ex-
ceedingly slow. Therefore, various modified implementa-

tions as well as accelerated approximate methods for en-
hanced trajectory generation have been proposed.

A major drawback of stochastic simulation that has
not received much attention in systems biology so far is
the statistical uncertainty due to the random nature of sim-
ulation results. Despite the fact that Gillespie’s algorithm
is termed exact, a stochastic simulation can never be ex-
act. The exactness of Gillespie’s algorithm is only ”in
the sense that it takes full account of the fluctuations and
correlations” [3] of reactions within a single simulation
run. It is common sense in stochastic simulation theory
that one should never rely on a single simulation run and
Gillespie already mentioned that it is ”necessary to make
several simulation runs from time0 to the chosen time
t, all identical with each other except for the initializa-
tion of the random number generator”. In fact, the reli-
ability of simulation results strongly depends on a suffi-
ciently large number of simulation runs, where an expla-
nation of the meaning of a sufficiently large number and
the determination of that number has to be carefully done
in terms of mathematical statistics. Even with approxi-
mate methods for accelerated trajectory generation still a
large number of trajectories is required in order to obtain
reliable and meaningful results with acceptable statistical
accuracy. Hence, in either case stochastic simulation is
computationally expensive and can only provide statisti-
cal estimates. Mathematically, it constitutes a statistical
estimation procedure implying that the results are subject
to statistical uncertainty.

An important point is tool support such that stochastic
simulation algorithms can be applied by practitioners who
need not be experts in stochastic simulation. Recently,
Mäkiraatikka et al [5] studied the user-friendliness of soft-
ware tools and among those studied, all of which had a
couple of shortcomings, they recommended Dizzy [6], cf.
http://magnet.systemsbiology.net/software/Dizzy.

We address the statistical accuracy of stochastic sim-
ulations. When we started our study, the initial intention
was to figure out how far accelerated generation of single
trajectories comes at the prize of an increased number of
trajectories necessary to provide a certain statistical accu-
racy. This obviously requires an appropriate framework
within which this accuracy is measured. It turned out that



currently neither Dizzy nor any of the other tools we are
aware of do provide any support with regard to statisti-
cal output analysis of simulation results. Consequently,
the major focus of our work changed towards introducing
an appropriate mathematical framework as well as com-
puting relevant statistical measures. While the mathemat-
ical framework is completely tool-independent, we dis-
cuss the computation and the further processing of nec-
essary information for statistical measures through Dizzy.
To come back to our initial intention we obtained several
statistics for two test cases but we did not find any essen-
tial differences in the statistical accuracy of the stochastic
simulation algorithms implemented in Dizzy. However,
this is far from being a general result because the lack of
support for statistical analysis and the quasi-manually and
thus extremely time-consuming computation of statistics
prevented more excessive studies and made it even hard
to verify the statistical accuracy for relatively small exam-
ples. Though we originally aimed at comparing different
algorithms, the statistical accuracy of stochastic simula-
tions is an important property for each algorithm in itself.
In fact, it is the only mathematical way to investigate the
reliability of simulation results. In practice, the number
of simulation runs is usually chosen very large but some-
what arbitrarily. Performing many more runs than nec-
essary for a certain desired statistical accuracy means a
significant waste of computer time. On the other hand,
too less simulation runs render the results meaningless.
Hence, it is highly desirable to have some rules giving
the required number of simulation runs. In particular, we
strongly emphasize the urgent need for integrating statis-
tical output analysis into Dizzy and other tools in a user
friendly way and we provide hints and recommendations
how this should be done.

The remainder of this paper is organized as follows.
In Section 2 we outline how simulation outcomes can be
formalized in a unified way such that they yield to sta-
tistical analysis. Measures for the statistical analysis are
given in Section 3. Then we present our test cases and
briefly describe how we computed statistics from the re-
sults provided by Dizzy. Finally, we give conclusions and
recommendations for future tool extensions.

2. FORMALIZING SIMULATION OUTCOMES

Stochastic simulations are nothing else than statistical es-
timations using computers. They generate realizations of
random variables with the help of random number genera-
tors. Similarly as for observations from laboratory exper-
iments, several properties can be derived from the realiza-
tions. Thus, from a statistical point of view repeated lab-
oratory experiments and stochastic simulations are equiv-
alent. The only difference is in the way realizations are
generated. In a laboratory experiment they are generated
within a physical real life environment whereas a stochas-
tic simulation imitates real life environments by using ap-
propriate rules.

In practice, each simulation run is finished at some
time and the outcome is a finite sequence of states where

state changes are triggered by reactions and several prop-
erties can be immediately derived for all species. Such
properties can be mathematically described as a function
f of the sequence of states. Since outcomes of stochastic
simulations are realizations of random variables and func-
tions of random variables are again random variables, the
property of interest is also a random variable. We denote
it by Y = f(X(t0), . . . ,X(tm)). Note that although the
set of reaction times is countable, yielding a sequence of
states, the time differences are in general not equal, i.e.
typically ti+1 − ti 6= tj+1 − tj for i 6= j. The random
variableY may be the number of molecules of a species
at some (not necessarily reaction) timet in which case it is
simply the projection to the relevant component ofX(t).
It may also be the mean number of molecules, the time
until a specific number of molecules has been reached or
exhausted. In general,Y might be any imageable property
that can be determined from a sample path. Each time a
realization is generated, it is different in general. Also it
will rarely ever exactly coincide with the ”true” valueY.
Statistical methods are required to assure that no wrong
conclusions are drawn from accidentally untypical exper-
iments. More precisely, a statistical estimation procedure
must be executed up to some predefined accuracy.

According to classical statistics one builds anestima-
tor from several (sayN ) stochastically independent and
identically distributed (iid) random variables, generates
N realizations via experiments, and estimates the prop-
erty of interest by the resulting realization of the estimator.
Since an estimator is itself a random variable it follows a
probability distribution with mean (expectation), variance,
higher moments etc. Hence, it is important to know its
fluctuation. The characteristics of the estimator, in partic-
ular its variance and measures derived from it, determine
the accuracy and the reliability of the estimate.

3. STATISTICAL ACCURACY OF SIMULATIONS

In this section we elaborate on the statistical estimation
procedure which is needed and performed in stochastic
simulations thereby focusing on the expectationE[Y ]. We
particularly emphasize the large time complexity and the
nevertheless remaining inherent uncertainty.

3.1. Point Estimators and Confidence Intervals

Given a sampleY1, . . . , YN , independent and identically
distributed as a univariate random variableY , the natural
estimator forE[Y ] is thesample mean

Ȳ =
1

N

N
∑

i=1

Yi. (1)

It is important to note that the sample mean is anunbi-
asedestimator forE[Y ], i.e. E[Ȳ ] = E[Y ]. Unbiased-
ness of an estimator is an obviously desirable property,
but for more complicated properties than the expectation
often not so straightforward to obtain as it might appear.
As a simple example note that an unbiased estimator for



the varianceσ2(Y ) is given by

S2 =
1

N − 1

N
∑

i=1

(

Yi − Ȳ
)2

, (2)

whereas the probably first suggestion to divide the sum by
N instead ofN − 1 yields a biased estimator.

As a random variable, an estimator is subject to statis-
tical uncertainty, and the question arising after an estima-
tor has been chosen is that of accuracy or reliability in a
statistical sense. Unbiasedness is not a sufficient criterion
to assure satisfiable accuracy. In addition the estimator’s
variance is of major importance. In fact, what is needed
to make proper statements on the accuracy, in particular
dependent onN , is aconfidence interval.

A confidence interval is a random (dependent on the
random sample) interval that contains the property of in-
terest with some predefined probability1−α, where1−α
is called theconfidence level, which is in practice usually
chosen as 90%, 95% or 99%. According to the central
limit theorem, for sufficiently largeN classical statistics
gives us the confidence interval

C =

[

Ȳ − z1−α/2

√

S2

N
, Ȳ + z1−α/2

√

S2

N

]

(3)

wherez1−α/2 denotes the1 − α/2 quantile of the stan-
dard normal distribution. An important point is how to
interpret confidence intervals. As explained above, exper-
iments generate realizations of all random variables in-
volved in the estimation procedure yielding specific val-
ues called estimates. In particular, for a given set of re-
alizationsy1, . . . , yN one gets a realization of the confi-
dence interval where endpoints are numerical values and
the confidence interval realization either containsE[Y ] or
not. Thus, there is nothing probabilisticafter the real-
izations have been obtained and the endpoints have been
accordingly set to numerical values. It is a wrong in-
terpretation that each single confidence interval realiza-
tion containsE[Y ] with probability 1 − α. The correct
interpretation is that if one constructs a large number of
100 ·(1−α)% confidence interval realizations, each based
onN experiments, the proportion (coverage) of those that
contain (cover)E[Y ] is 1−α. A direct consequence of the
correct interpretation of confidence intervals is that one
might obtain confidence interval realizations that do not
containE[Y ] at all.

3.2. Required Number of Simulation Runs

The width of the confidence interval suggests the amount
of variability in the estimated value. As the interval is
symmetric meaning that̄Y is the midpoint, it is sufficient
to consider the confidence interval half width. In non-
simulative computations the relative error is most often
more meaningful than the absolute error. Similarly, the
relative half width of the confidence interval is an appro-
priate measure of simulation accuracy.

In iterative numerical computations one proceeds by
iterating up to a given accuracy, more specifically up to

a maximum relative error. Analogously, a stochastic sim-
ulation can be viewed as a kind of iteration where sim-
ulation runs must be generated until the accuracy is suf-
ficient which means until the relative confidence interval
half width for a given confidence level is less than a given
maximum error bound. Obviously, the number of required
simulation runs is not fixed in advance since the realiza-
tions of the confidence interval depend on the specific out-
comes of the simulation runs. As an expression for the
number of simulation runs required to meet a predefined
maximum relative error ofβ and a confidence level of
1 − α expression (3) yields

N ≥
z2

1−α/2
S2

β2Ȳ 2
=

z2

1−α/2

β2
·

S2

Ȳ 2
. (4)

SinceS2 and Ȳ are estimators for the variance and the
expectation, respectively, the ratioS2/Ȳ 2 is an estimator
for c2

Y = σ2(Y )/E[Y ]2, the squaredcoefficient of varia-
tion of Y which is sometimes also called the (estimated)
relative error of the estimator̄Y .

Now, we can put specific values for the confidence
level and the maximum relative error into expression (4).
Taking usual values such as a confidence level of 99%
and a maximum relative error of 10% we getz1−α/2 ≈

2.58, β = 0.1, and thusN ≥ 664 ·c2
Y . As we can seeN is

determined by the squared coefficient of variation which
is the reason that in some cases simulation can be very
proper whereas in other cases it results either in runtime
explosion or unsatisfactory inaccuracy. More precisely, if
c2
Y is close enough to zero, a moderate number of simu-

lation runs suffice but ifc2
Y is large, the required amount

of simulation runs grows enormously. As an extreme ex-
ample take a situation where a very small probabilityγ of
some event has to be estimated. Such a probability can be
estimated via the expectation of the event’s indicator func-
tion. Thenc2

Y = (1 − γ)/γ is extremely large for very
small γ. To be more specific, with the accuracy require-
ments stated above the required number of simulation runs
in (4) to estimate a probability of10−9 is N ≥ 6.64 ·1011.

Although the latter example might seem unrealistically
at a first glance, there are in fact a lot of situations where
exactly this problem occurs. Even if we are not concerned
with such extreme cases it must be noted that except for
cases where the squared coefficient of variation of the prop-
erty of interest is close to zero, simulation requires a large
amount of computer time and at least as seriously there
remains a non-negligible probability of getting a wrong
estimate.

4. OBTAINING STATISTICS IN DIZZY

The stochastic simulation algorithms available in Dizzy
are Gillespie’s direct method [2, 3], the so-called Gibson-
Bruck algorithm [1] which is an implementation of an
equivalent interpretation of the Markov chain dynamics,
and two versions of tau-leaping [4], an approximate mul-
tistep approach for accelerated trajectory generation.

Dizzy provides a graphical user interface as well as
a command-line interface. Unfortunately, neither of these



interfaces provides any support for statistical analysis.The
only related option is to compute steady state fluctuations
but with regard to potentially infinite time horizons within
a trajectory. We computed all previously introduced sta-
tistical measures manually for various parameter sets of
two test-cases. The first one, the enzymatic reaction set

E + S
c1

−−⇀↽−−
c2

ES
c3

−−⇀ E + P (5)

is one of the small examples that comes with Dizzy. The
second one is a part of the bacteriophageλ pathway, the
lysis-lysogeny switch whose reaction kinetics are given in
Table 1. As mentioned in the introduction, for these reac-

Table 1. Lysis-lysogeny switch in bacteriophageλ

2X
c1
−⇀↽− X2 dimerization

D + X2

c2
−⇀↽− DX2 binding 1)

D + X2

c3
−⇀↽− DX

∗

2 binding 2)

DX2 + X2

c4
−⇀↽− DX2X2 binding 3)

DX
∗

2 + X2

c5
−⇀↽− DX2X2 binding 3)

D
cs
−→ D + X slow transcription

X
cd
−→ ∅ degradation

DX2

cf
−→ DX2 + X enhanced transcription

tion sets we did not find any significant differences in the
statistical accuracy of the stochastic simulation algorithms
implemented in Dizzy. It does not make much sense to
present excessive tables in order to illustrate this. So, also
due to lack of space we omit it.

We were restricted to these rather small examples be-
cause all statistics had to be essentially computed man-
ually. Though Dizzy offers the opportunity for perform-
ing many independent simulation runs specified as the en-
semble size, it does not provide all ”subresults” for each
run. Three output options are available. The plot op-
tion yields, as the name suggests, a plot of the numbers
of molecules versus time but gives no numerical values.
The other options are tables and their storage where the
number of intermediate time points can be specified but
for each time point only mean values of molecular num-
bers averaged over the simulation runs are provided. That
is, only sample means are computed without variances,
etc. Therefore, we obtained the necessary information for
each simulation run one after another. More precisely,
for each configuration we performedN single simulation
runs by invoking the chosen simulation algorithmN times
by hand. The reader may imagine the enormous amount
of time wasted. In fact, this way the simulation became
interactive in that each simulation run had to be started
manually. Fortunately, Dizzy uses fresh random number
also when single runs are manually performed one after
another and not only when many independent runs are
performed automatically. Finally, we proceeded by trans-
ferring the outcomes of each run to a statistical software
package (S-PLUS) which provided us with the desired sta-
tistical measures.

5. CONCLUSIONS AND RECOMMENDATIONS

The statistical accuracy of stochastic simulations is an im-
portant but so far largely neglected issue in order to mea-
sure the reliability of simulation results. A mathematical
framework for unified statistical simulation output analy-
sis can be given by appropriately formalizing simulation
outcomes and handling the property of interest, formally
expressed as a function of random variables which is it-
self a random variable, by means of classical statistics.
User support for statistical analysis is lacking in current
software tools for simulating biological pathways. As sta-
tistical accuracy is essential for meaningful results, such a
user support is highly desirable and strongly recommended.
Hence, future extensions of software tools should inte-
grate the methods outlined here. It seems that this should
not be too difficult to implement and rather straightfor-
ward if the property of interest is related to the number of
molecules at one or more specific times. In such cases, all
required information is actually computed within a stochas-
tic simulation and it remains to appropriately process it
and provide it to the user. Another recommended feature
is to offer the user the opportunity to prespecify the de-
sired statistical accuracy, e.g. in terms of relative errors or
relative confidence interval half-width, and automatically
perform simulation runs until this accuracy is reached. It
would be also of interest to provide a more flexible speci-
fication of the time horizon for each simulation run. Prop-
erties of practical interest are times until the molecules of
certain species are exhausted or certain subsets of the state
space are reached. Accordingly, users should be allowed
to specify such terminating conditions for simulation runs.
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