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Abstract

Importance sampling (IS) is the primary technique for carding reliable estimators in the context
of rare-event simulation. The asymptotic robustness oft®rtors is often qualified by properties such as
bounded relative error (BRE) and asymptotic optimality jAThese properties guarantee that the estimator’s
relative error remains bounded (or does not increase tdpvdeen the rare events becomes rarer. Other
recently introduced characterizations of IS estimatoesbaunded normal approximation (BNA), bounded
relative efficiency (BREff), and asymptotic good estimatad mean and variance.

In this paper we introduce three additional property nanmehtded relative error of empirical variance
(BREEV), bounded relative efficiency of empirical varialBREffEV), and asymptotic optimality of em-
pirical variance (AOEV), which state that the empiricaligace has itself the BRE, BREff and AO property,
respectively, as an estimator of the true variance. We thalyshe hierarchy between all these different
characterizations for a model of highly-reliable Markovisystems (HRMS) where the goal is to estimate
the failure probability of the system. In this setting, wewstthat BRE, BREff and AO are equivalent, that
BREffEV, BREEV and AOEYV are also equivalent, and that theseproperties are strictly stronger than all
other properties just mentioned. We also obtain a necessagufficient condition for BREEV in terms of
quantities that can be readily verified from the parametetiseomodel.

1 Introduction

Rare event simulation has received a lot of attention duts foaquent occurrence in areas such as reliability,
telecommunications, finance, and insurance, among otBeld [ 12]. In typical rare-event settings, Monte
Carlo simulation is not viable unless special “accelerdtiechniques are used to make the important rare
events occur frequently enough for moderate sample siZes.two main families of techniques for doing
that are splitting [8, 13, 22] and importance sampling ()9, 11].

Asymptotic analysis of rare-event simulations is usuallgde in an asymptotic regime where rarity
is controlled by a parameter > 0; the rare events become increasingly rare whern» 0 and we are
interested in asymptotic properties of a given (unbiasatijmatorY in the limit. (Some authors use a
parametern that goes to infinity instead, but this is equivalent; it sugfto takes = 1/m to recover our
framework.) Asymptotic characterizations of estimataorshis setting include the widely-used concepts of
bounded relative erro(BRE) andasymptotic optimalityAO) [11, 12], as well as the lesser-known properties
of bounded relative efficiencdBREff) [5], bounded normal approximatio(BNA) and asymptotic good
estimation of the mea(AGEM) and of the variance(AGEV) (also called probability and variance well-
estimation) [19, 20].

BRE means that the relative error (the standard deviatvdet] by the mean) of the estimafor= Y (¢)
remains bounded when— 0. AO requires that when the mean converges to zero expoflgriifist in ¢,
the standard deviation converges at the same exponental Irageneral, this is a weaker condition than
BRE [11, 16]. BREff generalizes BRE by taking into accourg tomputational time associated with the
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estimatorY’, which may vary withs. BNA implies that if we approximate the distribution of theeaage

of n i.i.d. copies ofY" by the normal distribution (e.g., to compute a confidenceriratl), the quality of
the approximation does not degrade wher> 0. AGEM and AGEV have been defined in the context of
estimating a probability in a HRMS, and basically mean thatsample paths that contribute the most to the
estimator and its second moment are not rare under the sapgaheme that is examined. The main goals
of splitting and 1S, from the asymptotic viewpoint, is to @dgsestimators that enjoy some (or all) of these
properties when the original (crude or naive) estimatoisduos satisfy them.

An important difficulty often lurking around in rare-evenitnsilation is that of estimating the variance
of the mean estimator: reliable variance estimators aredllp more difficult to obtain than reliable mean
estimators, because the rare events have a stronger irdlegnthe variance than on the mean. Variance
estimators are important because we need them to assessctivacy of our mean estimators, e.g., via
confidence intervals. They are also frequently used whenomgpare the efficiencies of alternative mean
estimators; poor variance estimators can easily yieldeaishg results in this context. This motivates our
introduction of three additional characterizations ofreators:bounded relative error of empirical variance
(BREEV),bounded relative efficiency of empirical varian®&REffEV), andasymptotically optimal empiri-
cal variance(AOEV). BREEV means that the empirical variance has the BRipgrty while AOEV means
that it has the AO property.

In this paper, we focus on IS and its application to an impartdRMS model studied by several authors
[4,10, 11, 14, 15, 17, 19, 20], and used for reliability as@yf computer and telecommunication systems.
In this model, a smaller value of the rarity parameténplies a smaller failure rate for the system’s compo-
nents, and we want to estimate the probability that the syséaches a “failed” state before it returns to a
state where all the components are operational. This pildipaimnverges to 0 whea — 0.

In general, IS consists in simulating the original modelhwdifferent (carefully selected) probability
laws for its input random variables, and counter-balantiregbias caused by this change of measure with a
weight called the likelihood ratio. For the HRMS model, wéuadly simulate a discrete-time Markov chain
whose transitions correspond to failures and repairs abithaal components and IS generally increases
[decreases] the probabilities of the failure [repair] siéions.

For this particular HRMS model, specific conditions on thedelgarameters and IS probabilities have
been obtained for the BRE property [15], for BNA [19, 20], dadAGEM and AGEV [20]. It is also shown
in [20] that BNA implies AGEV, which implies BRE, which im@s AGEM, which implies BRE, and that for
each implication the converse is not true. In this paper wergkthis hierarchy to incorporate AO, BREEV,
and AOEV. We show that in our context, BRE, BREff and AO areiemjant, BREEV, BREffEV and AOEV
are equivalent, and the latter three properties are strattbnger than all the others. We also obtain a
necessary and sufficient condition on the model parametetrshe 1S measure for BREEV, BREffEV and
AOEYV to hold.

The remainder of the paper is organized as follows. In Se@iowe give formal definitions of the
asymptotic characterizations discussed so far: BRE, AGGBBBNA, AGEV, AGEM, BREEYV, BREffEV,
and AOEYV, in a general rare-event framework. In Section 3,regall the basic definition of IS in its
general form. In Section 4, we describe the HRMS model and I0is applied to this model. Section 5
is devoted studying to asymptotic robustness propertighérHRMS context. We establish a complete
hierarchy between these properties and derive easilyatigfconditions for BREEV, BREffEV and AOEV.
Finally, in Section 6, we conclude and highlight perspexgifor further research.

The following notation is used all along the paper. For a fiamcf : (0,00) — R, we say thatf(¢) =
o(e?)if f(e)/e? — 0ase — 0; f(e) = O(e?) if | f(g)| < c1e? for some constant; > 0 for all e sufficiently
small; f(e) = O(e?) if | f(g)| > coe? for some constant, > 0 for all  sufficiently small; angf (¢) = O(e9)
if f(e) = O(e?) andf(e) = O(e?).

2 Asymptotic Robustness Properties in a Rare-Event Setting

Rare-event framework. We want to estimate a positive valge= v(¢) that depends onrity param-
etere > 0. We assume that is a monotone (strictly) increasing functionofind thatim,_,o+ y(¢) = 0.



We have at our disposal a family of estimat®fs= Y (¢) such thafE[Y ()] = ~(¢) for eachs > 0. Recall
that thevarianceandrelative errorof Y (¢) are defined by

o*(e) = Var[Y ()] = E[(Y (¢) — 7(¢))?]

and
RE[Y (¢)] = (Var[Y ()])'/2/4(e).-

In applications;y(¢) is usually a performance measure in the model, defined asleematical expecta-
tion, and some model parameters are defined as functiand=of example, in queuing systems, the service
time and inter-arrival time distributions and the bufferzes might depend os, while in Markovian relia-
bility models, the failure rates and repair rates might becfions ofe. The convergenceg(s) — 0 can be
exponential, polynomial, etc.; this depend on the appbicadnd how the model is parameterized. Note that
in all cases, the limit ag(s) — 07 is the same as the limit as— 0, because of the strict monotonicity.

We now define several properties that the family of estinsa{di(c), ¢ > 0} can have. In these defini-
tions (and elsewhere) we use the shorthand notafi@r to refer to this family (a slight abuse of notation).
We write “— 0” to mean “— 0% In typical rare-event settings, these properties do mid fior the naive
Monte Carlo estimators and the aim is to construct altereainbiased estimators (e.g., via IS or other
methods) for which they hold.

Bounded relative error.
Definition 1 (BRE) The estimatdY'(¢) has the BRE property if

lim sup RE[Y (¢)] < o0. 1)
e—0
When computing a confidence interval ofe) based on i.i.d. replications ori(¢) and the (classical)
central-limit theorem, for a fixed confidence level, the Wwidf the confidence interval is (approximately)

proportional to the standard deviatietfc). The BRE property means that this width decreases at least as
fast asy(e) whene — 0.

Asymptotic optimality. For several rare-event applications wherg) decreases exponentially fast
(e.g., in queueing and finance), it has not been possible dopfiactical BRE estimators so far, but esti-
mators with the (weaker) AO property have been construcyeexbloiting the theory of large deviations
[1, 7, 11, 12, 18]. AO means that wherd(s) converges to zero exponentially fast, the second moment
E[Y2(¢)] also converges exponentially fast and at the same expaheatt. This is the best possible rate; it
cannot converge at a faster rate because we alwaystadzs)] — v2(e) = o2() > 0.

Definition 2 (AO) The estimatol”(¢) is AO if

i MEY2()

e—0 In~y(e) =2 (2)

AO is generally weaker than BRE [11, 16]. But there are situstwhere the two are equivalent; this is
what will happen in our HRMS setup in Section 4. The followexgmples illustrate the two possibilities.

Example 1 Suppose that/(s) = exp[—k/e] for some constank and that our estimator hag’(e) =
q(1/¢) exp[—2k /] for some polynomial functiog. Then, the AO property is easily verified, whereas BRE
does not hold becau®E*[Y (¢)] = ¢(1/e) — oo whens — 0.

().

Example 2 Suppose now that?(s) = qi(e) = &' + o(e) andE[Y?(¢)] = ¢2(e) = &2 + o
— > 0. We

That is, both converge to O at a polynomial rate. Cleary< t;, becauseE[Y?(e)] 2(¢)



have BRE if and only if (iff)g2(¢)/¢1(¢) remains bounded when — 0, iff ¢ = ¢;. On the other hand,
—Ingi(e) = —In(e" (1 4+ 0(1))) = —t1 In(e) — In(1 + o(1)) and similarly forgs(¢) andt,. Then,

1HE[Y2(€)] — lim t2 Ine _ 2t2
e—0

=20 In~y(e) (t1/2)Ine &

Thus, AO holds ifft, = t1, which means that BRE and AO are equivalent in this case.

Bounded relative efficiency.

Definition 3 (BREff) Lett(c) be the expected computational time to generate the estim&to), whose
variance iso%(¢). The relative efficiency df (¢) is defined by

_ e 1
MBI = 201 ~ Ry ene)

We will say thatt(¢) has bounded relative efficiency (BREff)iif inf. o REff[Y ()] > 0.

BREff basically looks at the BRE property, but for a given gutational budget. Indeed, the computation
time may vary withe; this has to be encompassed in the BRE property.

Example 3 If t(¢) = ©(1), then BREff and BRE are equivalent properties.

Example 4 In [5], an example with BREff but without BRE is exhibited that examplet(e) = O(e) but
RE[Y (¢)] = O(e™!). Conversely, we might have examples suchtthigt= O(¢~!) andRE[Y (¢)] = ©(1)
so that BRE is verified, but not BRET.

Bounded normal approximation. We mentioned earlier the computation of a confidence intemwa
~(e) based on the central-limit theorem. This type of confidenterval is reliable if the sample average has
approximately the normal distribution, so it is relevaneti@mine the quality of this normal approximation
whene — 0. An error bound for this approximation is provided by thddaling version of the Berry-Esseen
theorem [2]:

Theorem 1 (Berry-Esseen) LeYi,...,Y, be ii.d. random variables with mean 0, variangg and third
absolute moment; = E[|Y;]?]. LetY,, and.S? be the empirical mean and variance X, .. ., Y,,, and let
F,, denote the distribution function of the standardized sungfadent statistic)

St = \/nY,/S,.

Then, there is an absolute constant oo such that for allz € R and alln > 2,

Fala) = B(o)] < 5o

where® is the standard normal distribution function. The classiesult usually hag in place ofS,, in the
definition ofS’: [6]; in that case one can take = 0.8 [21].

This result motivated the introduction of the BNA propery19], which requires that the Berry-Esseen
bound remain®(n~'/2) whene — 0.

Definition 4 (BNA) The estimatoY (¢) is said to have the BNA property if

. E[[Y(e) —v(e)]?]
hrglj(l)lp o3(e)

< 0. 3



The BNA propertyimpliesthat \/n|F,,(x) — ®(z)| remains bounded as a function ofi.e., that the
approximation error of7, by the normal distribution remains i@(n—'/2). The reverse is not necessarily
true, however. Perhaps it could seem more naturdéfmethe BNA property as meaning thgt|F), (z) —
®(x)| remains bounded, but we keep Definition 4 because it hasdgltesen adopted in several papers and
because it is often easier to obtain necessary and suffeulitions for BNA with this definition.

If a confidence interval of level — « is obtained using the normal distribution while the trudriisition
is F,, the error of coverage of the computed confidence interves et exceed sup,.cp | Fy,(z) — ®(x)|.

If that confidence interval is computed from an i.i.d. saml&), ..., Y,,(¢) of Y (¢), BNA implies that the
coverage error remains (n~'/?) whene — 0, with a hidden constant that does not depend o it is
controlled.

Bounded relative error, bounded relative efficiency, and asymjotic optimality of the empir-
ical variance. The next properties concern the stability of the empiricaiance as an estimator of the
true variancer?(¢). LetY;(e), ..., Y, (¢) be ani.i.d. sample df (¢), wheren > 2. The empirical mean and
empirical variance ar¥,, (¢) = (Y1(g) + --- + Y, (¢))/n and

1

n—1

S =5(e) = > _(Yi(e) = Ya(e))*.

i=1

When the variance and/or the relative error of an estimatoestimated by simulation in a rare-event setting,
it happens frequently that? () takes a very small value (orders of magnitude smaller thatrtie variance,
because the important rare events did not happen) with [a@@ability 1 — p(¢), and an extremely large
value with very small probability(¢), wherep(e) — 0 whene — 0. This gross underestimation of the
variance leads to wrong conclusions on the accuracy of thelation, with high probability. This motivates
the following definition.

Definition 5 (BREEV and AOEV) The estimafbi(c) has the BREEV property if

lim sup RE[S2 (€)] < 0. (4)
e—0
It has BREfEV property if
lim inf REfF[S?(¢)] > 0. (5)
It has the AOEV property if
4
lim M = 2. (6)

=0 Ino2(e)

A classical result states that

Varls?] =+ (B[ () - B )] - 230t ). @

n—1

Thus, the BREEYV, BREFfEV, and AOEV properties are linkedhithe fourth moment of ().

Asymptotic good estimation of the mean and of the variance. AGEM and AGEV are two ad-
ditional robustness properties introduced in [20], under name of “well estimated mean and variance,”
in the context of the application of IS to an HRMS model. Here pvovide more general definitions of
these properties. We assume thigt) is adiscreterandom variable, which takes valyewith probability
p(e,y) = P[Y (e) = y], fory € R. We also assume that its mean and variance are polynomietidas of

e: v(e) = ©(e") ando?(e) = O(e!2) for some constants > 0 andt, > 0. AGEM and AGEV state that
the sample paths that contribute to the highest-order tarithese polynomial functions are not rare.

Definition 6 (AGEM and AGEV) The estimatdf(c) has the AGEM property ifp(e, y) = O(e'*) implies
thatp(e,y) = ©(1) (or equivalently, thayy = ©(e'1)). It has the AGEV property ify — v(¢)]?p(e, y) =
O(e'2) implies thatp(e, y) = ©(1) (or equivalently, thafy — v(£)]? = ©(€*2)).

5



These properties means that for the realizatipraf Y that provide the leading contributions to the
estimator, the contributions decrease only because oédsitiy values of, and not because of decreasing
probabilities. In a setting where IS is applied ands the product of an indicator function by a likelihood
ratio (this will be the case in Sections 4.2 and 5), this mehas the value of the likelihood ratio when
yp(e,y) contributes to the leading term must converge at the sareatdlis leading term when— 0.

3 Importance Sampling

The aim of IS is to reduce the variance by simulating the mudll different probability laws for its input
random variables and correcting the estimator by a muttiilre weight called the likelihood ratio to recover
an unbiased estimator. In rare-event simulation, the ritialaws are changed so that the rare events of
interest occur more frequently under the new probabilitasuee. We briefly recall the basic definition of
IS; for comprehensive overviews see, e.g., [3, 11, 12].

In a general measure theoretic setting, IS is based on thieaigmn of the Radon-Nikodym theorem, and
the likelihood ratio corresponds to the Radon-Nikodymdsive. All applications of IS are special cases of
this setting.

Consider two probability measur@sandP* on a measurable spat@,.A), whereP is absolutely con-
tinuous with respect t@®*, which means that for ald € A, P*{A} = 0 = P{A} = 0. Then, the
Radon-Nikodym theorem guarantees thatlfealmost allw € €2, the Radon-Nikodym derivativé(w) =
(dP/dP*)(w) exists, and that

P{A} = /A L(w)dP*(w)  forall A e A.

In the context of ISPP* is called the IS measure and we refer to the random variébte L(w) as the
likelihood ratio. If Y = Y (w) is a random variable defined qf,.4), and if dP*(w) > 0 whenever
Y (w)dP(w) > 0, then

BplY] = / Y (w)dP(w) = / Y (w)L(w)dP* (w) = Ep-[Y LJ.

As a special case, consider a discrete time Markov ch&in, j > 0} with a discrete state space
S, initial distribution i over S, and probability transition matri¥. This defines a probability measure
over the sample paths of the chain. We are interested in anandriableY = ¢(Xo, X1,...,X,)
wherer is a random stopping time angdis a real-valued function. Let* be another initial distribution
and letP* be another probability transition matrix such theit(x,) H;Zl P*(zj_1,2;) > 0 whenever
g(xo,z1,. ., 2 )u(xo) H;Zl P(z;_1,z;) > 0. LetP* be the corresponding probability measure on the
Markov chain trajectories. When the sample path is genefededP*, the likelihood ratio that corresponds
to a change fronfu, P) to (¢*, P*) and realizatio Xy, . . ., X ) is the random variable

p(X0) Iy P(Xj-1, X))
L(w) = L(Xo, X1,...,X;) = 1w (Xo) ngi P*(X;_1,Xj;)

if 1*(Xo) [1j=; P*(X;-1, X;) # 0, and0 otherwise. Hence,

]E]P’[g(X()a cee 7XT)]

n

= Z Z l{T:n}g('rwalv"'axn)lu('ro)HP(xj—hxj)

n=0 (z¢,z1,...,Tn ) ES™ j=1
oo n

= Z 1{T:n}g(x07xl7"'71‘71)[’(1‘0’:1717"'73771)/1/*(3:0)HP*(‘rj—17xj)
n=0 (z9,z1,...,Tn)ES™ j=1

= Ee[g(Xo,.... X)) L(Xo, ..., X,)].



Note thatP*(Xo,...,X,;) = 0 is required only ifg(Xo, ..., X;)P(Xo,...,X,) = 0. An IS estimator
generates a sample patly, . .., X usingP* and computes

Y:g(Xo,Xl,...,XT)L(Xo,Xl,...7X7-) (8)

as an estimator d&p[Y] = Ep[g(Xo, X1, ..., X7)].

4 Importance Sampling for a Highly Reliable Markovian System

4.1 The Model

We consider an HRMS with types of components and components of type, fori = 1,...,c. Each
component is either in a failed state or an operational stdtestate of the system represented by a vector
z = (M, ..., 2(9), wherez( is the number ofailed components of typé Thus, we have a finite state
spaceS of cardinality(ny +1) - - - (n. + 1). We suppose tha is partitioned in two subset$ andF, where
U is a decreasing set (i.e.,if € U/ andz > y € S, theny € U) that contains the state = (0,...,0) in
which all the components are operational. We sayghatz wheny < z andy # x.

We assume that the times to failure and times to repair ofrtliwidual components are independent
exponential random variables with respective rates

Ai(z) = ai(@)e"@ = 0(c) and p(z) = O(1)

for type< components when the current staterjsvherea;(x) is a strictly positive real number arigl(z)

a strictly positive integer for each The parameter < 1 represents the rarity of failures; the failure rates
tend to zero when — 0. Failure propagation is allowed: from statethere is a probability; (x, y) (which
may depend o) that the failure of a typé-component directly drives the system to statén which there
could be additional component failures. Thus, the net juate fromz to y is

)\(x,y) = ZAz(x)pz(x7y) = 0(5)
=1

Similarly, the repair rate from stateto statey is p(x, y) (with possible grouped repairs), wherér, y) does
not depend on (i.e., repairs are not rare events when they are possible.system starts in statleand
we want to estimate the probabilityc) that it reaches the s&t before returning to state. Estimating this
probability is relevant in many practical situations [12].1

This model evolves as a continuous-time Markov chain (CTME}¢), t > 0}, whereY () is the
system’s state at timé Its canonically embedded discrete time Markov chain (DTN&C{X;, j > 0},
defined byX,; = Y (¢;) forj = 0,1,2,..., where{, = 0 and0 < §; < & < --- are the jump times of the
CTMC. Since the quantity of interest hergg), does not depend on the jump times of the CTMC, it suffices
to simulate the DTMC. This chaifiX;, j > 0} has transition probability matriR with elements

P(z,y) =PIX; =y | Xj1 = 2] = Mz, y)/a(x)
if the transition fromz to y corresponds to a failure and
P(z,y) = p(z,y)/a(x)
if it corresponds to a repair, where
g(x) =Y (M@, y) + p(z,y))
yeS

is the total jump rate out of, for all z,y in S. We will uselP to denote the corresponding measure on the
sample paths of the DTMC.



Let I' denote the set of pairss, y) € S? for which P(z,y) > 0. Our final assumptions are that the
DTMC is irreducible onS and that for every state € S, » # 1, there exists a statg < x such that
(z,y) € T (that is, at least one repairman is active whenever a conmpasiéiled).

Again, our goal is to estimate(c) = P[rr < 71|, whererz = inf{j > 0: X, € F} andr; = inf{j >
0 : X; = 1}. It has been shown [17] that for this model, there is an intege 0 such thaty(¢) = ©(¢"),
i.e., the probability of interest decreases at a polynonaite where — 0.

4.2 IS for the HRMS Model

Naive Monte Carlo estimateg <) by simulating samples paths with the transition probapitiatrix P and
counting the fraction of those paths for which < ;. But sincey(e) = ©(c"), the relative error of this
estimator increases toward infinity wher- 0 and something else must be done to obtain a viable estimator.

Several IS schemes have been proposed in the literatutagdiRMS model; see, e.g., [4, 15, 17]. Here
we limit ourselves to the so-callesimple failure biasindSFB), also nameBiasl SFB changes the matrix
P to a new matriXP* defined as follows. For statesc FU {1}, we haveP*(z,y) = P(x,y) forally € S,
i.e., the transition probabilities are unchanged. For ahgrostater, a fixed probabilityp is assigned to the
set of all failure transitions, and a probability— p is assigned to the set of all repair transitions. In each
of these two subsets, the individual probabilities arengk®portionally to the original ones. Under certain
additional assumptions, this change of measure increbsesdbability of failure when the system is up, in
a way that failure transitions are no longer rare eventsiérr < 7] = O(1).

For a given sample path ending at step- min(7#, 1), the likelihood ratio for this change of measure
can be written as

- _ P[(Xo,....X7)] 11 P(X;-1, X))
L=l X = sy~ e, )

and the corresponding (unbiased) IS estimatoy(@f) is given by (8), withg(Xo, ..., X;) = 1 cry
Thus, the random variablé(e) of Section 2 is

Y(E) = 1{7-]_-<7-1}L(X0, . 7X.,-). (9)

We will now examine the robustness properties of this estmander the SFB sampling.

5 Asymptotic Robustness Properties for the HRMS Model Under IS

A characterization of the IS schemes for the HRMS model tatisfy the BRE property was obtained in
[15]. AO is weaker than BRE in general. However, our first lestates that for the HRMS model, the two
are equivalent. This was mentioned without proof in [11].

Theorem 2 In our HRMS framework, with SFB, AO and BREff are equivale@RE.

Proof. Recall thaty(s) = ©(¢") for some integer > 0. It has also been shown in [19] that for this
model, E[Y?(¢)] = ©(e*) for somes < 2r, whereY (¢) is defined in (9). Alsa(s) = ©(1) for static
changes of measure such as SFB. The equivalence betweenddgR&nthen follows from Example 2, and
the equivalence between BREff and BRE follows from Example 3 O

A characterization of IS measures that satisfy BNA for theM8Rmodel is given in [19, 20] and the
following relationships between measures of robustnessprn@ved in [20]:

Theorem 3 In our HRMS framework, BNA implies AGEYV, which implies BREicwimplies AGEM. For
each of these implications, the converse is not true.



Our next results characterize the BREEV and AOEV in the HRk&&Ework. They require additional
notation. We will restrict our change of measure for IS toassl of measure®* defined by a transition
probability matrixP* with the following properties: whenevér,y) € T andP(x,y) = O(c4), if y = = #

1, thenP*(z,y) = O(e9~1), whereas ift = yorif y = x = 1, thenP*(x,y) = O(¢?). This classZ was
introduced in [19]; these measures increase the probabfliéach failure transition from a state# 1 and
satisfy the assumptions of Lemma 1 of [19] (we will use thimihea to prove our next results). From now
on, we assume th&* satisfies these properties.

We define the following sets of sample paths:

Am = {(xo, - ,zn): n>1lzg =12, € F,a; {1, F}andz;_q,z;) e 'forl1 <j <mn,
andP{(Xo, -, X7) = (zo, -+, )} = O(e™) };
AV {(z0,++,@n) € Ay P{(Xo,--+, X7) = (w0, -+, an)} = O(e") };
A = U PN

{m,k : m—k=t}

and lets be the integer such tha. (¢) = O(e*).

A necessary and sufficient condition @ for BREEV is as follows. This result means that a path
cannot be too rare under the IS meashreto verify BREEV. Similar results were obtained under the sam
conditions for BRE in [15], where it is shown that< 2m — r is needed when,,, ,, # 0, and for BNA in
[19, 20], where the necessary and sufficient conditidn 6 3m /2 — 3s/4.

Theorem 4 For an IS measur®* € 7, we have BREEYV if and only if for all integeksand m such that
m—k <randall(zg,--,z,) € Ap i,

P{(Xoy-+ X7) = (w0, a)} = O(4/425/3),
In other words, we must have< 4m/3 — 2s/3 whenever\,,, ;, # 0.

Proof. (a) Necessary condition. Suppose that there éxist € N and(zo, - -, z,) € A, such that
k=4m/3 —2s/3+ k' with k¥’ > 0 andm — k < r. This means tha®*{(Xo, -, X;) = (xo, -, Tn)} =
O(g4m/3-25/3+K") Then we have

E[(Y(E) - 7(5))4] > [L(x(% T mn) - 7(5)]4 P*{(XU, T XT) = (x07 T 7$n)}
_ @(54(m7k)+k:)

= (> ).
ThusE[(Y () — ~(¢))*]/at. () = O(e—2*"), which is unbounded when— 0.
(b) Sufficient condition. Letzy, - - -, x,) € A} such that < r (i.e.,m — k < r). Since
P*{(Xo, -, Xr) = (w0, -+, &)} = O(*™/37%/%)
forall (zq,---,z,) € Ay, if m —k < r, we have
O(e*™)

(L(l'(), T ’xn) - '7(6))4@*{()(07 T ’XT) = (x(h Tt vxn)} G(Ek) = 0(525)‘

@(€4k)
Using the fact thap , _, |A}| < oo and the first part of Lemma 1 of [19], we have
Z Z (L(JUQ,“-,xn))4P*{(X0,~~-,XTF) = (z0,- -+, @)} = O(e).
t<r (zo, -, xn)EA}

Since

Sy P{(Xoo, Xr) = (w0, )} <1

t=1 (20, @0 ) EA]



and Z P*{(Xo, -, Xrp) = (zg, -+, 2,)} < 1forallt, Lemma 1 of [19] implies that

Z Z (L(xoa"'yxn)_7(5))4P*{(X0a"'7X7') = (x(),"',xn)}

t=r (20,20 )EA}

Z Z (’)’(6)4+4’}/(€)3I€77t€t+6’}/2( )/‘5277%52t+47( )K3ﬂ3t€3t+1€4774t€4t) .

<
t=7 (zg,,xn)EA}
]P)*{(X(h e 7XT) = (an e 7xn)}
00
= 74(6)2 Z P*{(X07"'5XTF):(]"Oa"'axn)}
t=r (I(),"',l‘n)eA;
+Z(4’YS(E)KZ77tEt +6’}/2( >H2n2f€2t +4’Y( )Ii3’l73t€3t +I€4774t84t)
> P{(Xo,, Xp) = (0,0}
(zo, @0 ) €AY
< AR Y (ne)t + 672 ()R D (07 4 (e)k? Z e + ”42 n'et
t=r t=r t=r
_ ®(€4r) + @(847*) + @(€4r) + @(647") + @(547’)
= 0(e*),
becaus@r > s. |

Theorem 5 BREEV, BREffEV, and AOEV are equivalent.

Proof. This follows again directly from Example 2, using the facitth?(c) = ©(c*) andE[S2(¢)]
O(e') with t < 2s, and from Example 3 sincge) = O(1).
Next we show that BREEV and AOEV are the strongest propdrtiesi list.

Ol

Theorem 6 BREEV implies BNA.

Proof. This is a direct consequence of the necessary and sufficiitions over the paths for the
BNA and BREEV properties. These conditions are that fokadindm such thatn — k£ < r, whenever
A,, i IS non-empty, we must have < 4m/3 — 2s/3 for BREEV andk < 3m/2 — 3s/4 for BNA. But
4m/3 — 2s/3 = 8/9(3m/2 — 3s/4), so the theorem is proved if we always hae/2 — 3s/4 > 0, i.e.,
2m > s, which is true sinc€m > 2r > s. O

The following counter-example show that the converse ignugt there exist systems and IS measures
P* for which BNA is verified but not BREEV.

Example 5 Consider the example of Figure 1, using SFB failure biasiaglown in Figure 2. The states
where the system is down are colored in grey.

For this model, as it can be easily seen in Figurerl= 6 and Ag is comprised of the single path
(<2,2>,<1,2>,<0,2>). Moreover,s = 12 and the sole path i\ such that

IEDQ{(XO,---,XT) — (x07~-~,:rn)}
]}D*{(X07...,XT) — (1’0, . 75%)}

is the path inAg for which Figure 2 shows that it i®(1) under probability measur®*. It can also be
readily checked that < 3m/2 — 3s/4 for all paths, meaning that BNA is verified.

However, the pati< 2,2 >, < 2,1 >,< 2,0 >)isin A, withm = 14 andk = 12. Then
12 =k > 4m/3 — 2s/3 = 32/3, so the necessary and sufficient condition of Theorem 4 isariited.

=0(c'?)
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Figure 2: A two-dimensional example with SFB transition probabilities.

6 Conclusions

We have extended the hiecharchy of robustness properti&sesftimators for an HRMS model by adding
AO and the newly defined BREEV, BREffEV, and AOEYV, that as#eetstability of the relative size of the
confidence interval for independent samples, as rarityeas®s. The complete hierarchy can be summarized
as:

(BREEV < BREffEV < AOEV) = BNA = AGEV = (BRE < BREff & AO) = AGEM.

All these properties have some practical relevance andrstatheling the links between them is certainly of
high interest. BREEYV is the strongest, but it may be diffitalverify in some applications. A direction of
future research is to study this hierarchy of properties arargeneral (or different) settings; for example
in situations wherey(g) converges to zero exponentially fast. It is already knovat %0 is generally not
equivalent to BRE in this case. What about the other impbeatin the hierarchy?
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