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Abstract

Importance sampling (IS) is the primary technique for constructing reliable estimators in the context
of rare-event simulation. The asymptotic robustness of IS estimators is often qualified by properties such as
bounded relative error (BRE) and asymptotic optimality (AO). These properties guarantee that the estimator’s
relative error remains bounded (or does not increase too fast) when the rare events becomes rarer. Other
recently introduced characterizations of IS estimators are bounded normal approximation (BNA), bounded
relative efficiency (BREff), and asymptotic good estimation of mean and variance.

In this paper we introduce three additional property named bounded relative error of empirical variance
(BREEV), bounded relative efficiency of empirical variance(BREffEV), and asymptotic optimality of em-
pirical variance (AOEV), which state that the empirical variance has itself the BRE, BREff and AO property,
respectively, as an estimator of the true variance. We then study the hierarchy between all these different
characterizations for a model of highly-reliable Markovian systems (HRMS) where the goal is to estimate
the failure probability of the system. In this setting, we show that BRE, BREff and AO are equivalent, that
BREffEV, BREEV and AOEV are also equivalent, and that these two properties are strictly stronger than all
other properties just mentioned. We also obtain a necessaryand sufficient condition for BREEV in terms of
quantities that can be readily verified from the parameters of the model.

1 Introduction

Rare event simulation has received a lot of attention due to its frequent occurrence in areas such as reliability,
telecommunications, finance, and insurance, among others [3, 11, 12]. In typical rare-event settings, Monte
Carlo simulation is not viable unless special “acceleration” techniques are used to make the important rare
events occur frequently enough for moderate sample sizes. The two main families of techniques for doing
that are splitting [8, 13, 22] and importance sampling (IS) [3, 9, 11].

Asymptotic analysis of rare-event simulations is usually made in an asymptotic regime where rarity
is controlled by a parameterε > 0; the rare events become increasingly rare whenε → 0 and we are
interested in asymptotic properties of a given (unbiased) estimatorY in the limit. (Some authors use a
parameterm that goes to infinity instead, but this is equivalent; it suffice to takeε = 1/m to recover our
framework.) Asymptotic characterizations of estimators in this setting include the widely-used concepts of
bounded relative error(BRE) andasymptotic optimality(AO) [11, 12], as well as the lesser-known properties
of bounded relative efficiency(BREff) [5], bounded normal approximation(BNA) and asymptotic good
estimation of the mean(AGEM) andof the variance(AGEV) (also called probability and variance well-
estimation) [19, 20].

BRE means that the relative error (the standard deviation divided by the mean) of the estimatorY = Y (ε)
remains bounded whenε → 0. AO requires that when the mean converges to zero exponentially fast in ε,
the standard deviation converges at the same exponential rate. In general, this is a weaker condition than
BRE [11, 16]. BREff generalizes BRE by taking into account the computational time associated with the
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‡Otto-Friedrich-Universiẗat Bamberg, Feldkirchenstr. 21, D-96045 Bamberg, Germany, werner.sandmann@wiai.uni-bamberg.de

1



estimatorY , which may vary withε. BNA implies that if we approximate the distribution of the average
of n i.i.d. copies ofY by the normal distribution (e.g., to compute a confidence interval), the quality of
the approximation does not degrade whenε → 0. AGEM and AGEV have been defined in the context of
estimating a probability in a HRMS, and basically mean that the sample paths that contribute the most to the
estimator and its second moment are not rare under the sampling scheme that is examined. The main goals
of splitting and IS, from the asymptotic viewpoint, is to design estimators that enjoy some (or all) of these
properties when the original (crude or naive) estimator does not satisfy them.

An important difficulty often lurking around in rare-event simulation is that of estimating the variance
of the mean estimator: reliable variance estimators are typically more difficult to obtain than reliable mean
estimators, because the rare events have a stronger influence on the variance than on the mean. Variance
estimators are important because we need them to assess the accuracy of our mean estimators, e.g., via
confidence intervals. They are also frequently used when we compare the efficiencies of alternative mean
estimators; poor variance estimators can easily yield misleading results in this context. This motivates our
introduction of three additional characterizations of estimators:bounded relative error of empirical variance
(BREEV),bounded relative efficiency of empirical variance(BREffEV), andasymptotically optimal empiri-
cal variance(AOEV). BREEV means that the empirical variance has the BRE property while AOEV means
that it has the AO property.

In this paper, we focus on IS and its application to an important HRMS model studied by several authors
[4, 10, 11, 14, 15, 17, 19, 20], and used for reliability analysis of computer and telecommunication systems.
In this model, a smaller value of the rarity parameterε implies a smaller failure rate for the system’s compo-
nents, and we want to estimate the probability that the system reaches a “failed” state before it returns to a
state where all the components are operational. This probability converges to 0 whenε → 0.

In general, IS consists in simulating the original model with different (carefully selected) probability
laws for its input random variables, and counter-balancingthe bias caused by this change of measure with a
weight called the likelihood ratio. For the HRMS model, we actually simulate a discrete-time Markov chain
whose transitions correspond to failures and repairs of individual components and IS generally increases
[decreases] the probabilities of the failure [repair] transitions.

For this particular HRMS model, specific conditions on the model parameters and IS probabilities have
been obtained for the BRE property [15], for BNA [19, 20], andfor AGEM and AGEV [20]. It is also shown
in [20] that BNA implies AGEV, which implies BRE, which implies AGEM, which implies BRE, and that for
each implication the converse is not true. In this paper we extend this hierarchy to incorporate AO, BREEV,
and AOEV. We show that in our context, BRE, BREff and AO are equivalent, BREEV, BREffEV and AOEV
are equivalent, and the latter three properties are strictly stronger than all the others. We also obtain a
necessary and sufficient condition on the model parameters and the IS measure for BREEV, BREffEV and
AOEV to hold.

The remainder of the paper is organized as follows. In Section 2, we give formal definitions of the
asymptotic characterizations discussed so far: BRE, AO, BREff, BNA, AGEV, AGEM, BREEV, BREffEV,
and AOEV, in a general rare-event framework. In Section 3, werecall the basic definition of IS in its
general form. In Section 4, we describe the HRMS model and howIS is applied to this model. Section 5
is devoted studying to asymptotic robustness properties inthe HRMS context. We establish a complete
hierarchy between these properties and derive easily verifiable conditions for BREEV, BREffEV and AOEV.
Finally, in Section 6, we conclude and highlight perspectives for further research.

The following notation is used all along the paper. For a function f : (0,∞) → R, we say thatf(ε) =
o(εd) if f(ε)/εd → 0 asε → 0; f(ε) = O(εd) if |f(ε)| ≤ c1ε

d for some constantc1 > 0 for all ε sufficiently
small;f(ε) = O(εd) if |f(ε)| ≥ c2ε

d for some constantc2 > 0 for all ε sufficiently small; andf(ε) = Θ(εd)
if f(ε) = O(εd) andf(ε) = O(εd).

2 Asymptotic Robustness Properties in a Rare-Event Setting

Rare-event framework. We want to estimate a positive valueγ = γ(ε) that depends on ararity param-
eterε > 0. We assume thatγ is a monotone (strictly) increasing function ofε and thatlimε→0+ γ(ε) = 0.
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We have at our disposal a family of estimatorsY = Y (ε) such thatE[Y (ε)] = γ(ε) for eachε > 0. Recall
that thevarianceandrelative errorof Y (ε) are defined by

σ2(ε) = Var[Y (ε)] = E[(Y (ε) − γ(ε))2]

and
RE[Y (ε)] = (Var[Y (ε)])1/2/γ(ε).

In applications,γ(ε) is usually a performance measure in the model, defined as a mathematical expecta-
tion, and some model parameters are defined as functions ofε. For example, in queuing systems, the service
time and inter-arrival time distributions and the buffer sizes might depend onε, while in Markovian relia-
bility models, the failure rates and repair rates might be functions ofε. The convergenceγ(ε) → 0 can be
exponential, polynomial, etc.; this depend on the application and how the model is parameterized. Note that
in all cases, the limit asγ(ε) → 0+ is the same as the limit asε → 0+, because of the strict monotonicity.

We now define several properties that the family of estimators {Y (ε), ε > 0} can have. In these defini-
tions (and elsewhere) we use the shorthand notationY (ε) to refer to this family (a slight abuse of notation).
We write “→ 0” to mean “→ 0+.” In typical rare-event settings, these properties do not hold for the naive
Monte Carlo estimators and the aim is to construct alternative unbiased estimators (e.g., via IS or other
methods) for which they hold.

Bounded relative error.

Definition 1 (BRE) The estimatorY (ε) has the BRE property if

lim sup
ε→0

RE[Y (ε)] < ∞. (1)

When computing a confidence interval onγ(ε) based on i.i.d. replications onY (ε) and the (classical)
central-limit theorem, for a fixed confidence level, the width of the confidence interval is (approximately)
proportional to the standard deviationσ(ε). The BRE property means that this width decreases at least as
fast asγ(ε) whenε → 0.

Asymptotic optimality. For several rare-event applications whereγ(ε) decreases exponentially fast
(e.g., in queueing and finance), it has not been possible to find practical BRE estimators so far, but esti-
mators with the (weaker) AO property have been constructed by exploiting the theory of large deviations
[1, 7, 11, 12, 18]. AO means that whenγ2(ε) converges to zero exponentially fast, the second moment
E[Y 2(ε)] also converges exponentially fast and at the same exponential rate. This is the best possible rate; it
cannot converge at a faster rate because we always haveE[Y 2(ε)] − γ2(ε) = σ2(ε) ≥ 0.

Definition 2 (AO) The estimatorY (ε) is AO if

lim
ε→0

ln E[Y 2(ε)]

ln γ(ε)
= 2. (2)

AO is generally weaker than BRE [11, 16]. But there are situations where the two are equivalent; this is
what will happen in our HRMS setup in Section 4. The followingexamples illustrate the two possibilities.

Example 1 Suppose thatγ(ε) = exp[−k/ε] for some constantk and that our estimator hasσ2(ε) =
q(1/ε) exp[−2k/ε] for some polynomial functionq. Then, the AO property is easily verified, whereas BRE
does not hold becauseRE2[Y (ε)] = q(1/ε) → ∞ whenε → 0.

Example 2 Suppose now thatγ2(ε) = q1(ε) = εt1 + o(εt1) and E[Y 2(ε)] = q2(ε) = εt2 + o(εt2).
That is, both converge to 0 at a polynomial rate. Clearly,t2 ≤ t1, becauseE[Y 2(ε)] − γ2(ε) ≥ 0. We
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have BRE if and only if (iff)q2(ε)/q1(ε) remains bounded whenε → 0, iff t2 = t1. On the other hand,
− ln q1(ε) = − ln(εt1(1 + o(1))) = −t1 ln(ε) − ln(1 + o(1)) and similarly forq2(ε) andt2. Then,

lim
ε→0

ln E[Y 2(ε)]

ln γ(ε)
= lim

ε→0

t2 ln ε

(t1/2) ln ε
=

2t2
t1

.

Thus, AO holds ifft2 = t1, which means that BRE and AO are equivalent in this case.

Bounded relative efficiency.

Definition 3 (BREff) Lett(ε) be the expected computational time to generate the estimator Y (ε), whose
variance isσ2(ε). The relative efficiency ofY (ε) is defined by

REff[Y (ε)] =
γ(ε)2

σ2(ε)t(ε)
=

1

RE2[Y (ε)]t(ε)
.

We will say thatY (ε) has bounded relative efficiency (BREff) iflim infε→0 REff[Y (ε)] > 0.

BREff basically looks at the BRE property, but for a given computational budget. Indeed, the computation
time may vary withε; this has to be encompassed in the BRE property.

Example 3 If t(ε) = Θ(1), then BREff and BRE are equivalent properties.

Example 4 In [5], an example with BREff but without BRE is exhibited. Inthat example,t(ε) = O(ε) but
RE[Y (ε)] = O(ε−1). Conversely, we might have examples such thatt(ε) = O(ε−1) andRE[Y (ε)] = Θ(1)
so that BRE is verified, but not BREff.

Bounded normal approximation. We mentioned earlier the computation of a confidence interval on
γ(ε) based on the central-limit theorem. This type of confidence interval is reliable if the sample average has
approximately the normal distribution, so it is relevant toexamine the quality of this normal approximation
whenε → 0. An error bound for this approximation is provided by the following version of the Berry-Esseen
theorem [2]:

Theorem 1 (Berry-Esseen) LetY1, . . . , Yn be i.i.d. random variables with mean 0, varianceσ2, and third
absolute momentβ3 = E[|Y1|3]. Let Ȳn andS2

n be the empirical mean and variance ofY1, . . . , Yn, and let
Fn denote the distribution function of the standardized sum (or Student statistic)

S∗
n =

√
nȲn/Sn.

Then, there is an absolute constanta < ∞ such that for allx ∈ R and alln ≥ 2,

|Fn(x) − Φ(x)| ≤ aβ3

σ3
√

n
,

whereΦ is the standard normal distribution function. The classical result usually hasσ in place ofSn in the
definition ofS∗

n [6]; in that case one can takea = 0.8 [21].

This result motivated the introduction of the BNA property in [19], which requires that the Berry-Esseen
bound remainsO(n−1/2) whenε → 0.

Definition 4 (BNA) The estimatorY (ε) is said to have the BNA property if

lim sup
ε→0

E
[

|Y (ε) − γ(ε)|3
]

σ3(ε)
< ∞. (3)
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The BNA propertyimplies that
√

n|Fn(x) − Φ(x)| remains bounded as a function ofε, i.e., that the
approximation error ofFn by the normal distribution remains inO(n−1/2). The reverse is not necessarily
true, however. Perhaps it could seem more natural todefinethe BNA property as meaning that

√
n|Fn(x) −

Φ(x)| remains bounded, but we keep Definition 4 because it has already been adopted in several papers and
because it is often easier to obtain necessary and sufficientconditions for BNA with this definition.

If a confidence interval of level1−α is obtained using the normal distribution while the true distribution
is Fn, the error of coverage of the computed confidence interval does not exceed2 supx∈R

|Fn(x) − Φ(x)|.
If that confidence interval is computed from an i.i.d. sampleY1(ε), . . . , Yn(ε) of Y (ε), BNA implies that the
coverage error remains inO(n−1/2) whenε → 0, with a hidden constant that does not depend onε, so it is
controlled.

Bounded relative error, bounded relative efficiency, and asymptotic optimality of the empir-
ical variance. The next properties concern the stability of the empirical variance as an estimator of the
true varianceσ2(ε). LetY1(ε), . . . , Yn(ε) be an i.i.d. sample ofY (ε), wheren ≥ 2. The empirical mean and
empirical variance arēYn(ε) = (Y1(ε) + · · · + Yn(ε))/n and

S2
n = S2

n(ε) =
1

n − 1

n
∑

i=1

(Yi(ε) − Ȳn(ε))2.

When the variance and/or the relative error of an estimator are estimated by simulation in a rare-event setting,
it happens frequently thatS2

n(ε) takes a very small value (orders of magnitude smaller than the true variance,
because the important rare events did not happen) with largeprobability1 − p(ε), and an extremely large
value with very small probabilityp(ε), wherep(ε) → 0 whenε → 0. This gross underestimation of the
variance leads to wrong conclusions on the accuracy of the simulation, with high probability. This motivates
the following definition.

Definition 5 (BREEV and AOEV) The estimatorY (ε) has the BREEV property if

lim sup
ε→0

RE[S2
n(ε)] < ∞. (4)

It has BREffEV property if
lim inf

ε→0
REff[S2

n(ε)] > 0. (5)

It has the AOEV property if

lim
ε→0

ln E[S4
n(ε)]

lnσ2(ε)
= 2. (6)

A classical result states that

Var[S2
n] =

1

n

(

E[(Y (ε) − E[Y (ε)])4] − n − 3

n − 1
σ4

)

. (7)

Thus, the BREEV, BREffEV, and AOEV properties are linked with the fourth moment ofY (ε).

Asymptotic good estimation of the mean and of the variance. AGEM and AGEV are two ad-
ditional robustness properties introduced in [20], under the name of “well estimated mean and variance,”
in the context of the application of IS to an HRMS model. Here we provide more general definitions of
these properties. We assume thatY (ε) is adiscreterandom variable, which takes valuey with probability
p(ε, y) = P[Y (ε) = y], for y ∈ R. We also assume that its mean and variance are polynomial functions of
ε: γ(ε) = Θ(εt1) andσ2(ε) = Θ(εt2) for some constantst1 ≥ 0 andt2 ≥ 0. AGEM and AGEV state that
the sample paths that contribute to the highest-order termsin these polynomial functions are not rare.

Definition 6 (AGEM and AGEV) The estimatorY (ε) has the AGEM property ifyp(ε, y) = Θ(εt1) implies
that p(ε, y) = Θ(1) (or equivalently, thaty = Θ(εt1)). It has the AGEV property if[y − γ(ε)]2p(ε, y) =
Θ(εt2) implies thatp(ε, y) = Θ(1) (or equivalently, that[y − γ(ε)]2 = Θ(εt2)).
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These properties means that for the realizationsy of Y that provide the leading contributions to the
estimator, the contributions decrease only because of decreasing values ofy, and not because of decreasing
probabilities. In a setting where IS is applied andY is the product of an indicator function by a likelihood
ratio (this will be the case in Sections 4.2 and 5), this meansthat the value of the likelihood ratio when
yp(ε, y) contributes to the leading term must converge at the same rate at this leading term whenε → 0.

3 Importance Sampling

The aim of IS is to reduce the variance by simulating the modelwith different probability laws for its input
random variables and correcting the estimator by a multiplicative weight called the likelihood ratio to recover
an unbiased estimator. In rare-event simulation, the probability laws are changed so that the rare events of
interest occur more frequently under the new probability measure. We briefly recall the basic definition of
IS; for comprehensive overviews see, e.g., [3, 11, 12].

In a general measure theoretic setting, IS is based on the application of the Radon-Nikodym theorem, and
the likelihood ratio corresponds to the Radon-Nikodym derivative. All applications of IS are special cases of
this setting.

Consider two probability measuresP andP
∗ on a measurable space(Ω,A), whereP is absolutely con-

tinuous with respect toP∗, which means that for allA ∈ A, P
∗{A} = 0 ⇒ P{A} = 0. Then, the

Radon-Nikodym theorem guarantees that forP-almost allω ∈ Ω, the Radon-Nikodym derivativeL(ω) =
(dP/dP

∗)(ω) exists, and that

P{A} =

∫

A

L(ω)dP ∗(ω) for all A ∈ A.

In the context of IS,P∗ is called the IS measure and we refer to the random variableL = L(ω) as the
likelihood ratio. If Y = Y (ω) is a random variable defined on(Ω,A), and if dP

∗(ω) > 0 whenever
Y (ω)dP(ω) > 0, then

EP[Y ] =

∫

Y (ω)dP(ω) =

∫

Y (ω)L(ω)dP
∗(ω) = EP∗ [Y L].

As a special case, consider a discrete time Markov chain{Xj , j ≥ 0} with a discrete state space
S, initial distribution µ over S, and probability transition matrixP. This defines a probability measure
over the sample paths of the chain. We are interested in a random variableY = g(X0,X1, . . . ,Xτ )
whereτ is a random stopping time andg is a real-valued function. Letµ∗ be another initial distribution
and letP∗ be another probability transition matrix such thatµ∗(x0)

∏τ
j=1 P

∗(xj−1, xj) > 0 whenever
g(x0, x1, . . . , xτ )µ(x0)

∏τ
j=1 P(xj−1, xj) > 0. Let P

∗ be the corresponding probability measure on the
Markov chain trajectories. When the sample path is generatedfrom P

∗, the likelihood ratio that corresponds
to a change from(µ,P) to (µ∗,P∗) and realization(X0, . . . ,Xτ ) is the random variable

L(ω) = L(X0,X1, . . . ,Xτ ) =
µ(X0)

∏τ
j=1 P(Xj−1,Xj)

µ∗(X0)
∏τ

j=1 P∗(Xj−1,Xj)

if µ∗(X0)
∏τ

j=1 P
∗(Xj−1,Xj) 6= 0, and0 otherwise. Hence,

EP[g(X0, . . . ,Xτ )]

=
∞
∑

n=0

∑

(x0,x1,...,xn)∈Sn

1{τ=n}g(x0, x1, . . . , xn)µ(x0)
n

∏

j=1

P(xj−1, xj)

=

∞
∑

n=0

∑

(x0,x1,...,xn)∈Sn

1{τ=n}g(x0, x1, . . . , xn)L(x0, x1, . . . , xn)µ∗(x0)

n
∏

j=1

P
∗(xj−1, xj)

= EP∗ [g(X0, . . . ,Xτ )L(X0, . . . ,Xτ )].
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Note thatP∗(X0, . . . ,Xτ ) = 0 is required only ifg(X0, . . . ,Xτ )P(X0, . . . ,Xτ ) = 0. An IS estimator
generates a sample pathX0, . . . ,Xτ usingP

∗ and computes

Y = g(X0,X1, . . . ,Xτ )L(X0,X1, . . . ,Xτ ) (8)

as an estimator ofEP[Y ] = EP[g(X0,X1, . . . ,Xτ )].

4 Importance Sampling for a Highly Reliable Markovian System

4.1 The Model

We consider an HRMS withc types of components andni components of typei, for i = 1, . . . , c. Each
component is either in a failed state or an operational state. Thestate of the systemis represented by a vector
x = (x(1), . . . , x(c)), wherex(i) is the number offailed components of typei. Thus, we have a finite state
spaceS of cardinality(n1 +1) · · · (nc +1). We suppose thatS is partitioned in two subsetsU andF , where
U is a decreasing set (i.e., ifx ∈ U andx ≥ y ∈ S, theny ∈ U) that contains the state1 = (0, . . . , 0) in
which all the components are operational. We say thaty ≺ x wheny ≤ x andy 6= x.

We assume that the times to failure and times to repair of the individual components are independent
exponential random variables with respective rates

λi(x) = ai(x)εbi(x) = O(ε) and µi(x) = Θ(1)

for type-i components when the current state isx, whereai(x) is a strictly positive real number andbi(x)
a strictly positive integer for eachi. The parameterε � 1 represents the rarity of failures; the failure rates
tend to zero whenε → 0. Failure propagation is allowed: from statex, there is a probabilitypi(x, y) (which
may depend onε) that the failure of a type-i component directly drives the system to statey, in which there
could be additional component failures. Thus, the net jump rate fromx to y is

λ(x, y) =
c

∑

i=1

λi(x)pi(x, y) = O(ε).

Similarly, the repair rate from statex to statey is µ(x, y) (with possible grouped repairs), whereµ(x, y) does
not depend onε (i.e., repairs are not rare events when they are possible). The system starts in state1 and
we want to estimate the probabilityγ(ε) that it reaches the setF before returning to state1. Estimating this
probability is relevant in many practical situations [11, 12].

This model evolves as a continuous-time Markov chain (CTMC)(Y (t), t ≥ 0}, whereY (t) is the
system’s state at timet. Its canonically embedded discrete time Markov chain (DTMC) is {Xj , j ≥ 0},
defined byXj = Y (ξj) for j = 0, 1, 2, . . ., whereξ0 = 0 and0 < ξ1 < ξ2 < · · · are the jump times of the
CTMC. Since the quantity of interest here,γ(ε), does not depend on the jump times of the CTMC, it suffices
to simulate the DTMC. This chain{Xj , j ≥ 0} has transition probability matrixP with elements

P(x, y) = P[Xj = y | Xj−1 = x] = λ(x, y)/q(x)

if the transition fromx to y corresponds to a failure and

P(x, y) = µ(x, y)/q(x)

if it corresponds to a repair, where

q(x) =
∑

y∈S

(λ(x, y) + µ(x, y))

is the total jump rate out ofx, for all x, y in S. We will useP to denote the corresponding measure on the
sample paths of the DTMC.
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Let Γ denote the set of pairs(x, y) ∈ S2 for which P(x, y) > 0. Our final assumptions are that the
DTMC is irreducible onS and that for every statex ∈ S, x 6= 1, there exists a statey ≺ x such that
(x, y) ∈ Γ (that is, at least one repairman is active whenever a component is failed).

Again, our goal is to estimateγ(ε) = P[τF < τ1], whereτF = inf{j > 0 : Xj ∈ F} andτ1 = inf{j >
0 : Xj = 1}. It has been shown [17] that for this model, there is an integer r > 0 such thatγ(ε) = Θ(εr),
i.e., the probability of interest decreases at a polynomialrate whenε → 0.

4.2 IS for the HRMS Model

Naive Monte Carlo estimatesγ(ε) by simulating samples paths with the transition probability matrix P and
counting the fraction of those paths for whichτF < τ1. But sinceγ(ε) = Θ(εr), the relative error of this
estimator increases toward infinity whenε → 0 and something else must be done to obtain a viable estimator.

Several IS schemes have been proposed in the literature for this HRMS model; see, e.g., [4, 15, 17]. Here
we limit ourselves to the so-calledsimple failure biasing(SFB), also namedBias1. SFB changes the matrix
P to a new matrixP∗ defined as follows. For statesx ∈ F ∪{1}, we haveP∗(x, y) = P(x, y) for all y ∈ S,
i.e., the transition probabilities are unchanged. For any other statex, a fixed probabilityρ is assigned to the
set of all failure transitions, and a probability1 − ρ is assigned to the set of all repair transitions. In each
of these two subsets, the individual probabilities are taken proportionally to the original ones. Under certain
additional assumptions, this change of measure increases the probability of failure when the system is up, in
a way that failure transitions are no longer rare events, i.e., P

∗[τF < τ1] = Θ(1).
For a given sample path ending at stepτ = min(τF , τ1), the likelihood ratio for this change of measure

can be written as

L = L(X0, . . . ,Xτ ) =
P[(X0, . . . ,Xτ )]

P∗[(X0, . . . ,Xτ )]
=

τ
∏

j=1

P(Xj−1,Xj)

P∗(Xj−1,Xj)

and the corresponding (unbiased) IS estimator ofγ(ε) is given by (8), withg(X0, . . . ,Xτ ) = 1{τF<τ1}.
Thus, the random variableY (ε) of Section 2 is

Y (ε) = 1{τF<τ1}L(X0, . . . ,Xτ ). (9)

We will now examine the robustness properties of this estimator under the SFB sampling.

5 Asymptotic Robustness Properties for the HRMS Model Under IS

A characterization of the IS schemes for the HRMS model that satisfy the BRE property was obtained in
[15]. AO is weaker than BRE in general. However, our first result states that for the HRMS model, the two
are equivalent. This was mentioned without proof in [11].

Theorem 2 In our HRMS framework, with SFB, AO and BREff are equivalent to BRE.

Proof. Recall thatγ(ε) = Θ(εr) for some integerr ≥ 0. It has also been shown in [19] that for this
model,E[Y 2(ε)] = Θ(εs) for somes ≤ 2r, whereY (ε) is defined in (9). Alsot(ε) = Θ(1) for static
changes of measure such as SFB. The equivalence between AO and BRE then follows from Example 2, and
the equivalence between BREff and BRE follows from Example 3. �

A characterization of IS measures that satisfy BNA for the HRMS model is given in [19, 20] and the
following relationships between measures of robustness was proved in [20]:

Theorem 3 In our HRMS framework, BNA implies AGEV, which implies BRE, which implies AGEM. For
each of these implications, the converse is not true.
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Our next results characterize the BREEV and AOEV in the HRMS framework. They require additional
notation. We will restrict our change of measure for IS to a classI of measuresP∗ defined by a transition
probability matrixP∗ with the following properties: whenever(x, y) ∈ Γ andP(x, y) = Θ(εd), if y � x 6=
1, thenP

∗(x, y) = O(εd−1), whereas ifx � y or if y � x = 1, thenP
∗(x, y) = O(εd). This classI was

introduced in [19]; these measures increase the probability of each failure transition from a statex 6= 1 and
satisfy the assumptions of Lemma 1 of [19] (we will use this lemma to prove our next results). From now
on, we assume thatP∗ satisfies these properties.

We define the following sets of sample paths:

∆m = {(x0, · · · , xn) : n ≥ 1, x0 = 1, xn ∈ F , xj 6∈ {1, F} and(xj−1, xj) ∈ Γ for 1 ≤ j ≤ n,

andP{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εm)};
∆m,k = {(x0, · · · , xn) ∈ ∆m : P

∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εk)};
∆′

t =
⋃

{m,k : m−k=t}

∆m,k;

and lets be the integer such thatσ2
P∗(ε) = Θ(εs).

A necessary and sufficient condition onP
∗ for BREEV is as follows. This result means that a path

cannot be too rare under the IS measureP ∗ to verify BREEV. Similar results were obtained under the same
conditions for BRE in [15], where it is shown thatk ≤ 2m − r is needed when∆m,k 6= ∅, and for BNA in
[19, 20], where the necessary and sufficient condition isk ≤ 3m/2 − 3s/4.

Theorem 4 For an IS measureP∗ ∈ I, we have BREEV if and only if for all integersk andm such that
m − k < r and all (x0, · · · , xn) ∈ ∆m,k,

P ∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = O(ε4m/3−2s/3).

In other words, we must havek ≤ 4m/3 − 2s/3 whenever∆m,k 6= ∅.

Proof. (a) Necessary condition. Suppose that there existk,m ∈ N and(x0, · · · , xn) ∈ ∆m,k such that
k = 4m/3 − 2s/3 + k′ with k′ > 0 andm − k < r. This means thatP∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} =
Θ(ε4m/3−2s/3+k′

). Then we have

E[(Y (ε) − γ(ε))4] ≥ [L(x0, · · · , xn) − γ(ε)]4 P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

= Θ(ε4(m−k)+k)

= Θ(ε2s−3k′

).

ThusE[(Y (ε) − γ(ε))4]/σ4
P∗(ε) = O(ε−2k′

), which is unbounded whenε → 0.
(b) Sufficient condition. Let(x0, · · · , xn) ∈ ∆′

t such thatt < r (i.e.,m − k < r). Since

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = O(ε4m/3−2s/3)

for all (x0, · · · , xn) ∈ ∆m,k if m − k < r, we have

(L(x0, · · · , xn) − γ(ε))4P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} =

Θ(ε4m)

Θ(ε4k)
Θ(εk) = O(ε2s).

Using the fact that
∑

t<r |∆′
t| < ∞ and the first part of Lemma 1 of [19], we have

∑

t<r

∑

(x0,···,xn)∈∆′
t

(L(x0, · · · , xn))4P ∗{(X0, · · · ,XτF
) = (x0, · · · , xn)} = O(ε2s).

Since
∞
∑

t=r

∑

(x0,···,xn)∈∆′
t

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} ≤ 1
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and
∑

(x0,···,xn)∈∆′
t

P
∗{(X0, · · · ,XτF

) = (x0, · · · , xn)} ≤ 1 for all t, Lemma 1 of [19] implies that

∞
∑

t=r

∑

(x0,···,xn)∈∆′
t

(L(x0, · · · , xn) − γ(ε))4P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

≤
∞
∑

t=r

∑

(x0,···,xn)∈∆′
t

(γ(ε)4 + 4γ(ε)3κηtεt + 6γ2(ε)κ2η2tε2t + 4γ(ε)κ3η3tε3t + κ4η4tε4t) ·

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

= γ4(ε)

∞
∑

t=r

∑

(x0,···,xn)∈∆′
t

P
∗{(X0, · · · ,XτF

) = (x0, · · · , xn)}

+

∞
∑

t=r

(4γ3(ε)κηtεt + 6γ2(ε)κ2η2tε2t + 4γ(ε)κ3η3tε3t + κ4η4tε4t) ·
∑

(x0,···,xn)∈∆′
t

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

≤ γ4 + 4γ3(ε)κ

∞
∑

t=r

(ηε)t + 6γ2(ε)κ2
∞
∑

t=r

(η2ε2)t4γ(ε)κ3
∞
∑

t=r

(η3ε3)t + κ4
∞
∑

t=r

(η4ε4)t

= Θ(ε4r) + Θ(ε4r) + Θ(ε4r) + Θ(ε4r) + Θ(ε4r)

= O(ε2s),

because2r ≥ s. �

Theorem 5 BREEV, BREffEV, and AOEV are equivalent.

Proof. This follows again directly from Example 2, using the fact that σ2(ε) = Θ(εs) andE[S4
n(ε)] =

Θ(εt) with t ≤ 2s, and from Example 3 sincet(ε) = Θ(1). �

Next we show that BREEV and AOEV are the strongest propertiesin our list.

Theorem 6 BREEV implies BNA.

Proof. This is a direct consequence of the necessary and sufficient conditions over the paths for the
BNA and BREEV properties. These conditions are that for allk andm such thatm − k < r, whenever
∆m,k is non-empty, we must havek ≤ 4m/3 − 2s/3 for BREEV andk ≤ 3m/2 − 3s/4 for BNA. But
4m/3 − 2s/3 = 8/9(3m/2 − 3s/4), so the theorem is proved if we always have3m/2 − 3s/4 ≥ 0, i.e.,
2m ≥ s, which is true since2m ≥ 2r ≥ s. �

The following counter-example show that the converse is nottrue: there exist systems and IS measures
P
∗ for which BNA is verified but not BREEV.

Example 5 Consider the example of Figure 1, using SFB failure biasing as shown in Figure 2. The states
where the system is down are colored in grey.

For this model, as it can be easily seen in Figure 1,r = 6 and ∆6 is comprised of the single path
(< 2, 2 >,< 1, 2 >,< 0, 2 >). Moreover,s = 12 and the sole path in∆ such that

P
2{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

P∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(ε12)

is the path in∆6 for which Figure 2 shows that it isΘ(1) under probability measureP∗. It can also be
readily checked thatk ≤ 3m/2 − 3s/4 for all paths, meaning that BNA is verified.

However, the path(< 2, 2 >,< 2, 1 >,< 2, 0 >) is in ∆m,k with m = 14 and k = 12. Then
12 = k > 4m/3 − 2s/3 = 32/3, so the necessary and sufficient condition of Theorem 4 is not verified.
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Figure 1: A two-dimensional model with its transition probabilities.
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Figure 2: A two-dimensional example with SFB transition probabilities.

6 Conclusions

We have extended the hiecharchy of robustness properties ofIS estimators for an HRMS model by adding
AO and the newly defined BREEV, BREffEV, and AOEV, that assertthe stability of the relative size of the
confidence interval for independent samples, as rarity increases. The complete hierarchy can be summarized
as:

(BREEV⇔ BREffEV ⇔ AOEV) ⇒ BNA ⇒ AGEV ⇒ (BRE⇔ BREff ⇔ AO) ⇒ AGEM.

All these properties have some practical relevance and understanding the links between them is certainly of
high interest. BREEV is the strongest, but it may be difficultto verify in some applications. A direction of
future research is to study this hierarchy of properties in more general (or different) settings; for example
in situations whereγ(ε) converges to zero exponentially fast. It is already known that AO is generally not
equivalent to BRE in this case. What about the other implications in the hierarchy?
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