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Abstract—In this paper, we present a first analysis of the
application of Raptor codes in the domain of P2P streaming. With
the help of fountain codes, such as Raptor codes, it is possible to
completely omit content reconciliation in P2P networks. Hereby,
the scheduling complexity of the data dissemination is greatly
reduced. The contributions of the paper are the following: First,
we present our implementation of the Raptor code used in
the performed experiments and elaborate the application of
the Raptor code in the scenario of P2P streaming. Second, we
investigate the choice of the prevalent parameters, necessary to
achieve the best trade-off between performance, computational
complexity and resilience of the Raptor code. We use the obtained
results to evaluate the general feasibility of using Raptor codes to
improve the performance of P2P streaming networks. In addition,
we report some insights arising from the practical experience with
Raptor codes.

I. INTRODUCTION

Peer-to-Peer (P2P) streaming applications have attracted a
lot of attention in recent years. Numerous scientific stud-
ies investigate their properties, large research projects have
been founded to develop prototypes (e.g. NapaWine[5] or
PPNext[6]), but more important, real systems have also been
deployed successfully. Today, the most popular representa-
tives among those systems are PPLive[7], PPStream[8] and
SopCast[9]. These P2P streaming applications are able to
serve simultaneously up to hundreds of thousands of users
nowadays. Two different service types can be distinguished
within P2P streaming: A video on demand (VoD) system
provides users with VCR functionality, e.g. stop, rewind or
fast forward of the video. In contrast, by live streaming the
users have a more TV-like experience, where all users view the
same playback time within a certain range of delay. Regarding
the system architecture and in particular the implementation
of the data dissemination, the systems can be coarsely divided
into two main groups: Mesh-pull systems build an unstructured
overlay, hence "mesh", and each peer requests, "pulls", the
data from other peers. Tree-push systems explicitly construct
a dissemination overlay and "push" the data along the con-
structed "trees". In reality, many "hybrid" combinations of
both approaches exist, but all of the successfully deployed
systems construct a dense mesh of neighboring peers; since
due to the high fluctuation rate of the participants in a P2P
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network the organization and maintenance of one or several
dedicated dissemination tree(s) have been proven to be too
computationally costly and vulnerable[15].

Regardless of the type of P2P system, two optimization
problems have to be solved to achieve high data through-
put in the network: At first, the choice which pieces, also
called chunks, should be requested from or send to other
peers. Then subsequently, the selection which peers should
be chosen for the data transfer. The optimal solution of both
problems is inherently NP-complete. Therefore, the problems
are computationally intractable, i.e. for the time being, there
is no solution with polynomial run time. Due to that reason,
much research has been done to develop algorithms that
yield good approximations. But even if the algorithm yields
good estimates, a further requirement must be considered
in addition: The algorithm must be applied in a distributed
manner, as centralized approaches do not scale for large,
distributed and highly dynamic systems like P2P networks.

Various dissemination algorithms for P2P streaming have
been proposed that address these two problems (see [10] for
further references). However, by using one particular class of
forward error correction (FEC) codes, it is possible to omit one
of the two optimization problems. Fountain codes could reduce
the problem to a bandwidth allocation problem for which
well performing distributed approximations are available (e.g.
[22]). Due to their desirable property of ratelessness, they
have the ability to generate theoretically an unlimited amount
of uniquely encoded data on-the-fly. This property eliminates
completely the need for content reconciliation, as no redundant
content exists in the network. Chunk scheduling would not
be needed any more, since a receiving peer could restore
the original data needing just a slightly larger amount of
encoded data from any set of peers. Another benefit is the
improved exploitation of low quality neighbors, i.e. peers with
a slow bandwidth or a high delay connection. Due to the
real-time constraint, common P2P streaming networks require
highly sophisticated scheduling strategies in order to take
advantage of the upload capacity of such peers. In contrast
to Fountain code enabled P2P streaming applications, where
every received symbol of a block is useful for the decoding
of the original data. Thereby, it is easier to make use of the

resources of low quality peers. To summarize, fountain codes
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are the ideal supplement for an unreliable but lightweight
transport protocol like UDP to increase the dissemination
performance of P2P networks.

However, realizing this promise of erasure coding is not a
straightforward task: For instance, there are patent concerns
regarding the use of fountain codes that scare off potential
users. Despite the fact that one algorithm for a Raptor code, a
potential candidate of the class of fountain codes, is described
e.g. in RFC 5053 [14] and also the 3GPP standard MBMS
(Multimedia Broadcast/Multicast Services) [1] includes a sys-
tematic Raptor code in their specifications for content delivery,
there is nowhere to find a free implementation of a Raptor
code. Perhaps because the underlying theory cannot be under-
stood so easily. We will present our insights and experiments
regarding the use of Raptor codes in the domain of P2P
streaming. The paper is organized as follows: We introduce
Raptor codes in Section II. In addition, we present the use
case of a Raptor code implementation in combination with
P2P streaming. The following experiments in Section III are
conducted to obtain the fundamental parameters needed for
future deployment. Subsequently, we discuss related work in
Section IV. Finally, we conclude the paper in Section V.

II. RAPTOR CODES

As mentioned before, fountain codes have the ability to
generate potentially unlimited, uniquely encoded data on-the-
fly. Rapid Tornado codes belong to the class of fountain codes.
They have been developed by Amin Shokrollahi [19] as an
advancement of Tornado codes [13]. Raptor codes represent
an improvement over Luby transform codes (LT codes), which
have been invented by Michael Luby [11] and represent the
first practical class of a fountain code with near optimal error
correction functionality. In this section we provide a brief
description of the Raptor coding operations. For the theoretical
details of Raptor codes, we would like to refer the reader to
[19] and for further details on practical aspects to [12].

Given a data file divided into 7" data blocks each consisting
of a set of k input symbols Q) = (x1, ..., x) with symbol size
[ bytes, a fountain code can theoretically provide an unlimited
supply of uniquely encoded output symbols (z1, ..., z,). This
desirable property is called ratelessness. In this context the
term "symbol" represents just a data unit. The decoder can
recover the source symbols from any set of © = k(1 + ¢)
encoded symbols, with © slightly larger than k. The surplus
of symbols € x k is called the overhead of the code and these
additional symbols are also called repair symbols. Fountain
codes do not guarantee the successful decoding by k£ symbols,
however, the decoding failure probability decreases with each
additional symbol. Another desirable aspect is the possibility
that each receiver is able to decode the encoded symbols
generated by different rateless code encoders, if both use the
same rateless code and operate on the same input symbols.
Due to that property, content reconciliation can be avoided,
i.e. there is no need for the chunk scheduling in P2P networks.
Our implementation of a Raptor code follows the specification
given in [1]. The Raptor code was implemented in plain C

code; therefore, it is quite fast and the timing accuracy needed
for the measurements is reasonably high. The specification
in [1] uses a combination of a low density parity check
(LDPC) precode with an LT code. The rateless property of
the Raptor code is a result of the LT code, while the increased
performance is due to the LDPC code. The encoding consists
of two phases: In the pre-code phase a matrix A is used
to generate the intermediate symbols (ci,...,co) from the
k source symbols. Matrix A consists mainly of three sub-
matrices: a LDPC matrix, a higher density check matrix and
a LT code matrix. In the second phase the LT encoder selects
randomly a set of intermediate symbols ¢ = (ci,...,Cm)
with m < k and generates the output symbols (z1,...,20).
For each encoded symbol, the encoder chooses randomly
a degree d between 1 and k from a specifically designed
degree distribution and selects also randomly a neighborhood
of connected d intermediate symbols. Each output symbol z,
is then generated by XORing the set of chosen intermediate
symbols. To yield the random values, a pseudo random number
generator (PRNG) can be used. By relying on a pseudo-
random process, some initial value has to be determined that
serves as the seed for the PRNG. Regarding the decoding of
the encoded symbols the receiver needs to know the chosen
degree d and the set of chosen intermediate symbols. One
possibility to inform the decoder is given by the transmission
of the initial value that was used as a seed for the PRNG.
However, one very important condition must be met to omit
the content reconciliation completely. Each encoder, i.e. each
peer, should use a unique seed value for its PRNG. Other-
wise, encoders with the same seed value would produce the
same output symbols. Such redundant encoded symbols would
increase the overhead rate of the Raptor code.

Upon reception of a given threshold ©® = k(1 + &) of
encoded symbols, the receiver starts the decoding process.
The threshold is the minimum amount of symbols that make
the pre-code matrix A invertible and thereby, the decoding
successful. At first, the decoder starts with the application of
the pre-code on the set of received symbols and afterwards, it
applies the LT code. To restore the intermediate symbols, the
pre-code matrix A must be inverted:

T =eT x AL (1)

where (.)7 is the transpose of (.) and e is the vector of encoded
symbols. The matrix inversion is the computationally most
expensive operation at the decoder, accounting for up to 92 %
of the computing time. The source symbols are then obtained
according to:

Q:GLTXCﬁ (2)

with G as generator matrix of the LT code.

In summary, the excellent performance, the minimal overhead,
approaching very closely an ideal fountain code, and the ability
to efficiently support dynamically adjusted block sizes, makes
Raptor codes the ideal candidate in helping P2P networks to
get rid off the chunk scheduling problem.
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Figure 1.

A. P2P Streaming with Raptor Codes

To enable the P2P video data dissemination with Raptor
codes, the encoded symbols must be packetized and annotated
with information needed for the decoding process. This proce-
dure is coarsely illustrated in Figure 1: At first, the source data
is segmented into 7" blocks. The size of each block £ in terms
of symbols and the size of each symbol [ can be dynamically
adjusted due to the rateless property of Raptor Codes. Every
block is marked with a unique ID (BlockID). The Raptor
code is then applied independently on each block. Every block
consists of a number k of source symbols of size [ bytes. If the
last symbol of a block would not consist of [ bytes, it is padded
with Os to [. All the symbols of one block get consecutive IDs
(SymbolID), which indicate the seed values for the random
number generator that was used to determine d. The header
for each encoded symbol includes the BlockID, the SymbolID
and the symbol size [. This information is necessary to ensure
that the receiving peer can match the symbol to the correct
block and is able to decode the data successfully. When the
receiving peer reaches the threshold of © encoded symbols, it
starts to decode the particular block. If the source block could
be restored successfully, the peer will indicate the transmission
stop for the particular block by sending ACK messages to all
participating peers. If the decoding was not successful, the
receiver waits for additional symbols and retries the decoding
again. After the successful decoding, the peer encodes the
data again with its own unique seed values for the further
dissemination to other requesting peers. Before the encoding
and transmission of one block can start, the participating peers
must agree upon the block size and the symbol size. Therefore,
a special message containing the block header information
is exchanged. As long as the symbol size ! is much bigger
than the header, the additional information of the exchanged
message introduces only a small overhead. The overhead rate
© can be determined by the chosen block size. The goal of our
work is to find the parameters that maximize the transmission
speed and meanwhile decrease the decoding speed in order
to yield an excellent video playback quality. Since we are
especially interested in the performance that can be achieved in
practice, we will investigate in the following experiments the
best trade-off between performance, computational complexity
and resilience of the Raptor code.

Encoding and packetization of the video data for P2P streaming

III. MEASUREMENT RESULTS

In order to exploit the potential of Raptor codes for P2P
streaming and hereby, reduce the scheduling complexity and
increase the performance of the P2P data dissemination, a
few important questions have to be answered first: How big
should the symbol size and the block size be chosen? How
many repair symbols are needed in each block? And does the
number of peers, from which one peer receives concurrently
data, play a role? Since we are mainly interested in the basic
parameter settings and the achievable performance, we use a
simple simulation setup to provide answers to these questions
and thereby, build the foundation for the future application of
Raptor codes in the domain of P2P streaming.

A. Symbol Size

At first, the influence of the symbol size [ on the decoding
time needs to be investigated. Theoretically, Raptor codes
have a linear decoding time O(k log(1/e)); therefore, by
choosing a symbol size and block size as large as possible,
the total amount of decoding time could be decreased in
theory. However, as our implementation relies heavily on
the matrix inversion algorithm, which accounts for up to
92 % of the computing time, the theoretical optimum can
not be reached for large block sizes. In addition, as the
communication between sender and receiver takes place in
the Internet with the prevalence of Ethernet technology in the
customer premises network, there is the artificial border of the
maximum transmission unit (MTU). As most Ethernet LANs
use a MTU of 1500 bytes, it would increase the complexity,
if the symbol size is chosen larger than approx. 1450 bytes (=
Ethernet MTU - IP header [=20 bytes] - TCP/UDP header
[=20/8 bytes] - application header); because symbols with
[l > (MTU - headers) bytes need to be fragmented at the
sender and reassembled at the receiver.

Since we are especially interested in the influence of cur-
rently available commodity hardware on the encountered time
lags, we performed the experiments on an Intel Pentium i7-
860 CPU with 2.8 Ghz and Linux as operating system. As we
do not know the underlying distribution, we used the bootstrap
method to obtain very conservative confidence intervals for the
mean values. The obtained samples X = (X1, ..., X,) are re-
garded as an approximation of the true, unknown distribution.
Under the condition that the random variables are independent
and identically distributed (iid), the Glivenko—Cantelli theorem
claims that the empirical distribution function converges with
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Figure 2. Encoding Throughput

probability 1 to the true CDF with a growing number of
observations. However, the computed confidence intervals,
even for a confidence level of 99 %, are too small to be visible
in the plot. Our implementation reaches with such off-the-
shelf hardware already encoding/decoding speeds of several
Mbits per second (see Figure 2 and Figure 3): On the i7
machine, using only one CPU thread, the Raptor code reaches
regardless of the symbol size [ with a block size of k = 32 an
encoding speed of almost 24 Mbits/s and a decoding speed of
29 Mbits/s. As one can observe, the influence of the symbol
size on the encoding and decoding speed is minimal, yet,
larger symbol sizes increase the speed slightly. At the moment,
this performance would be already enough for current P2P
streaming applications, which serve channels with playback
rates of several hundreds of Kbits/s up to 2 Mbits/s. Since
our implementation was not optimized for encoding/decoding
speed, we are optimistic to yield even better results through
optimizations, but we leave this task for future work.

B. Block Size

In conjunction with the symbol size, the optimal block size
needs to be determined, in order to achieve a good trade-off
between the overhead of repair symbols, the amount of time
needed for the decoding and the delay the receiver encounters
while waiting to reach the decoding threshold. The outcome of
this investigation seeks to minimize the start up delay and the
amount of time needed for the coding and decoding process.
Hence, if the block size is chosen very large, the receiver
will encounter an excessive start up delay. Smaller block
sizes at the beginning of the transmission would decrease the
startup delay, but how efficient are they in terms of decoding
speed and overhead rate? In our experiments we investigated
a range of block sizes with k = 32,64, 128,256,512,1024
and a symbol size [ = 64,128,256,512,1024, 1448 bytes.
For every combination of block and symbol size, randomly
chosen video data was encoded and decoded on the test ma-
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Figure 3. Decoding Throughput

chine. The resulting throughput of the encoding and decoding
process are depicted in Figure 2 respectively in Figure 3.
The effect of the higher complexity of the matrix inversion
with increasing block sizes is clearly visible. Hence, to boost
the encoding/decoding speed, small block sizes are beneficial.
However, block sizes chosen too small (k¢ < 32) have an
adverse effect on the encoding performance, as the content
switching overhead for the CPU increases. In addition, one
problem remains the overhead rate of repair symbols that are
necessary to ensure the successful decoding. For block sizes
with £ = 10 symbols € can be as high as 110 %, whereas
€ drops to less then 1 % for block sizes greater than 1600
symbols. From the perspective of requiring a small overhead
rate, large block sizes are necessary. However, if the block
size is chosen too large, the receiver will have to wait for the
reception of the © symbols, leading to longer decoding delays.
The two types of P2P streaming, VoD and live streaming,
require different approaches in regard to this choice. For VoD
the block sizes should start small, but then, increase fast to a
certain threshold to be able to exploit the benefits of a reduced
overhead. In contrast, in the case of live streaming, block sizes
chosen too large would imply a negative effect on the playback
lag. In this setting the block size needs to be chosen quite small
to avoid too large playback delays. But both cases require
always a compromise between encoding/decoding speed and
coding overhead.

C. Number of Repair Symbols

Obviously, the next open question concerns the number
of repair symbols needed for the successful decoding of
each block. Since each additional repair symbol increases
the overhead, i.e. the threshold © that ensures a successful
decoding with high probability, the right number has to be
chosen. However, even if the decoding should fail, a retry
with a slightly higher number of © will yield success with
very high probability. We initially performed experiments with
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Figure 4. Decoding success depending on the number of repair symbols

k = 10,100, 1000 and 2000 symbols and [ = 1448 bytes. The
results of the experiments are illustrated in Figure 4. We use
very conservative confidence intervals based on Wilson’s score
interval[21] with a confidence level of 95 %. Gasiba et al. [3]
report that on average k + 2 symbols are sufficient to recover
from transmission errors. They investigate source block sizes
of k = 100,1000 with [ = 512 bytes. As the the symbol size
! should have no influence on the decoding probability, the
results of our experiments do not confirm their © value. The
minimum threshold of additional repair symbols that ensures
the decoding success with a probability of 99.9 % is given in
Table 1. Nevertheless, the obtained overhead rate is still very
close to that of an ideal fountain code for larger block sizes.
Figure 6 depicts the outcome of further experiments regarding
the necessary overhead rate for a decoding success of 99.9 %.
In this experiment we investigated the combinations of block
sizes with k = 32,64, 128,256,512,1024 and symbol sizes
Il = 64,128,256,512,1024, 1448 bytes. In accordance with
the theory, it can be observed that the symbol size [ has no
influence on the decoding probability. The obtained overhead
rate drops from 34.37 % for k = 32 to acceptable 1.56 % for
k = 1024 (see also Table I).

D. Peer Neighborhood Size

As each peer receives data from a multitude of peers, the
optimal number of concurrent data transmissions for one block
is an important parameter. Theoretically, there should be no
difference compared to the scenario of a single encoder as
long as all peers use unique seed values for their PNRGs.
But as depicted in Figure 5, we could observe an increase
of needed repair symbols for the case of £k = 1000 symbols
growing with the number of peers. This would be a normal
consequence, if there is no guarantee that all the different peers
use unique seed values, because encoders using the same seed
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Figure 5. Decoding success depending on the number of repair symbols in
the multi peer scenario. The number of sending peers is given in the panel
above each graph.

produce the same redundant output symbols. However, we are
ensuring the uniqueness of the seed values in our controlled
simulation environment. Since the degree distribution given in
[1] was not designed for such a scenario, we assume that the
distribution might not provide consistent performance over all
possible draws. But the increase of ¢ is not worrying in terms
of the overhead rate for large block sizes, rising for £ = 1000
and the decoding probability of 99.9 % from 16 symbols, i.e.
e = 1.6%, for a single sender to 30 symbols for 75 peers, and
thus, € = 3%.

IV. RELATED WORK

The usage of forward error correction codes in the domain
of video transmission has been proposed more than 20 years
ago [16]. However, highly efficient FEC that enable this
scenario have been made available only in recent years. Raptor
codes are already used for media broadcasting and unicast
streaming (e.g. [2] or [17]). The first work proposing the usage
of rateless codes to avoid the chunk scheduling problem in
P2P streaming networks was presented by Wu and Li [22].
In this study they use LT codes in a simulation setup with a
prototypical P2P streaming application to evaluate the general
feasibility. Suh er al. [20] construct an analytical model for
a VoD P2P system that incorporates also the use of rateless
codes. Grangetto et al. [4] investigate the application of LT
codes for P2P streaming albeit in a pure simulation study
too. More recently, Oh et al. [18] present a P2P streaming
prototype that uses Online codes and propose exploiting the
rateless property of fountain codes to adapt the symbol size
dynamically in order to avoid excessive start up delays.



Table T
MINIMUM AMOUNT OF REPAIR SYMBOLS NECESSARY TO ACHIEVE A DECODING SUCCESS OF 99.9 %

[ k [ 10 32 64 [ 100 [ 128 | 256 512 [ 1000 | 1024 [ 2000 ]|
## repair symbols 11 11 11 11 12 13 15 16 16 17
e 110% | 3437% | 17.18% | 11% | 937% | 507% | 292% | 1.6% | 156 % | 085 %
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Figure 6. Overhead rate for a decoding success of 99.9 %

V. CONCLUSION

Compared to Online or LT codes, Raptor codes have a
superior performance in terms of coding speed and overhead
rate. Our first insights regarding the application of Raptor
codes in the domain of P2P streaming and the results of
our experiments are also promising; they require only a small
overhead rate for large block sizes and are able to support the
necessary streaming rates. To summarize, this paper introduces
the application of Raptor codes for P2P streaming. In particu-
lar, we present a first analysis of the parameters needed for the
successful future deployment and report the performance that
can be expected by using Raptor codes. However, the obtained
results are not only limited to P2P streaming networks, but are
valid for all types of applications needing advanced forward
error correction. We conclude that the general feasibility of this
approach is given and that Raptor codes provide an excellent
alternative to reduce the complexity of the data dissemination
in P2P networks.
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