
Auto-Mininet: Assessing the Internet Topology Zoo
in a Software-Defined Network Emulator

Marcel Großmann, Stephan J.A. Schuberth
Faculty of Information Systems and Applied Computer Science

Otto-Friedrich University,
Bamberg, Germany

Email: marcel.grossmann@uni-bamberg.de
stephan-johannes-albert.schuberth@stud.uni-bamberg.de

Abstract—Among all virtualization approaches, Software-
Defined Networking exploits this paradigm on the communication
level and offers an ”operating system” for networks. Therefore,
the control logic of packet processing devices is moved onto
external controllers and these decoupled control planes offer
more reliability, scalability and performance compared to purely
distributed systems. This fact is moving the network towards the
application layer and offers applications direct interaction within
the network. However, the requirements to build a virtualized
network are fairly hard to accomplish and therefore, efficient
testbed environments should reveal the success. In this field the
container-based emulation used by Mininet is able to simulate
large topologies on a single computer. We develop an automatic
initialization of Mininet topologies and provide the ability to
build up real-world test-suites at small scale. To achieve this, we
use graphical formats of the Internet Topology Zoo to generate
networks according to the Mininet syntax. Additionally, we
develop a distributed test suite for evaluation purposes that uses
a distributed Internet traffic generator. A statistical analysis of
the generated traffic reveals the performance of Mininet for the
topologies.

I. INTRODUCTION

Over the last decades virtualization revolutionized the
structures of the computing area. However, communication
infrastructures have remained virtually untouched, but there are
upcoming approaches to virtualize this segment too. Software-
Defined Networking (SDN) is a paradigm that uses controller
instances to supervise the hops in a network topology. Figure
1 depicts several layers of a SDN approach. The application
layer is holding the business applications and introduces trans-
parency of the network to the end users. The application layer
communicates through an application programming interface
(API) with the control software of the SDN that is providing
required network services. The controllers are connected to
the infrastructure layer through a control data plane and
can change network device configurations at runtime. Among
other approaches McKeown et al. [1] introduce the OpenFlow
protocol that is an essential element for developing SDN solu-
tions. Here, it is the first vendor-independent communication
interface that is placed between the control and forwarding
layers of a SDN. Therefore, OpenFlow is maintained by the
Open Networking Foundation (ONF), which is a user-driven
organization that is implementing SDN with open standards
[2].

A major problem arises by proving the functionality of
such a system. Setting up environments is too cost intensive,

Infrastructure Layer

Network Device

Network Device

Network Device

Network Device

Control Layer
SDN
Control
Software Network Services

Application Layer

Business Applications

API APIAPI

Control Data Plane interface
(e.g. OpenFlow)

Fig. 1. A SDN approach to separate several layers and introduce transparency
of the network to the business applications. The application layer communi-
cates through an API with the control software of the SDN that is providing
required network services. Via a control data plane the controller are connected
to the infrastructure layer and can change network device configurations at
runtime [2].

especially for deploying the system on a complete hardware
based testbed. Here is, where virtualization is part of the game
again. With Open vSwitch [3] being a software-defined net-
work stack without the need of hardware-based infrastructure
a topology is virtualizable within a single machine. Lantz et
al. [4] introduce Mininet, a framework that runs on a single
computer and is able to simulate software-defined network
topologies with respect to their conditions.

Now one question arises: How do we represent real-
world topologies in such a testbed? In our paper we define
a methodology to build up Mininet configurations based on
graphical maps of the Internet Topology Zoo (ITZ) [5]. This
is a platform that provides several topologies of the real-world
in a graphical notation, containing the geographical location
of the switches or routers, in the following called hops, and
their interconnections. The parser uses these graphs to generate
a topology for the testbed and you can migrate all existing
topologies to Mininet onto your computer.

For the evaluation of the Mininet topologies, we used the
distributed Internet traffic generator (D-ITG), Avallone et al.
[6] developed. It generates traffic in several ways and is able
to collect all relevant statistics. Within a simple test topology
we reveal, how Mininet performs in setups with or without
cross-traffic and which effect a breakdown of a hop induces.

II. SOFTWARE-DEFINED NETWORKING

Traditional networks are shaped by their hardware compo-
nents and the software that runs on these components. Ideally,
hardware itself should satisfy the following requirements.
First, it is simplicity, because it should be inexpensive to
build hardware to run networks. Second, vendor-neutrality
describes that parts of several vendors should work together
in a mixed setup. Third, it is a future-proof concept since
there is no need to suddenly upgrade hardware to support
future innovations. Besides, the software side of networking
basically has a single requirement: It is flexibility to easily
update the control plane to support inexpensive changes to the
network by its operators. However, not a single goal is reached
by any of the popular technologies today. Initially, network
deployments are unnecessarily expensive, difficult to change
in runtime, expensive to maintain and not very user-friendly
with maintenance downtimes. In the past, several approaches
have been tried, with almost all of them having failed to reach
any significant importance.
Network design depends on two major influence factors. On
the one hand, network requirements arise by its users and
operators. Users usually want their data (their packets) to arrive
at the desired destination with several Quality of Service (QoS)
attributes being satisfied. However, network operators have
different needs like traffic engineering, virtualization, tunneling
or network separation, which are often transparent to the
users or even irrelevant. On the other hand, network interfaces
define the network through technical implementation details.
The packet header of a given protocol broadcasts the users’
requirements from their hosts to the network and is transparent
to any kind of job that is performed. For the operators a more
tedious and time-intensive configuration of the network needs
to be fulfilled in order to get each network node running.
Finally, a packet identifies to a switch through specific data
in its header.

In the original Internet operator requirements are negligi-
ble. Only packets flowing from source to destination hosts were
concerned, while each hop updates the routing information
to forward the packet. Due to the fact that there is no
network interface for the operator, the hardware is manually
programmed at each hop. The host-network and packet-switch
are basically one interface.
Multiprotocol Label Switching (MPLS) [7] started differenti-
ating the ”core” and the ”edge” of the network. A label is
assigned to packets arriving at the network edge that is used
to forward them, when they are traversing the core. The labels
serve both, the purpose of forwarding inside the network as
well as satisfying operator requirements like traffic engineering
or tunneling. The label information itself is decoupled from the
host protocol, i.e. IPv4, which expresses the host requirements
to the network. While the Internet Protocol (IP) remains the
interface to express host requirements, the label is the interface
that is responsible for the packet switching. For broadcasting
the requirements of operators nothing changed compared to
the original Internet.

The biggest change SDN brings is the introduction of a
programmable interface for network operators. The control
plane is decoupled from the data plane, this means the topology
of nodes that transfer data is different from the one that is used
to propagate control changes. Figure 2 shows the separation of

S1 S2

S3 S4

S5

H1
H2

eth1
eth2

eth3eth4

H3
H4

eth1 eth2

eth3eth4

H5

H6

eth1
eth2

eth3eth4

H7

H8

eth1
eth2

eth3eth4

H9 H10

eth1

eth2

eth3eth4

Controller

Fig. 2. Separation of two planes in SDN. S1 to S5 are the hops of the
network. They construct the network topology which is depicted with the lines
being attached to the switches via eth interface. The dashed lines represent the
control plane that connects every hop to the controller via a secure channel.

planes that is achieved through the coexistence of two different
topologies. The controller plane is basically a tree with the
controller as root node being connected to all other switches
and routers. All attached hosts cannot influence the controller
plane, because it is transparent to the outside of the network.
The network topology is represented by the actual data plane
that is not taking the controller into account. There exist several
network designs with this level of separation, i.e. Ethane [8]
or OpenFlow [1].
The defacto standard protocol in the SDN field is OpenFlow
and will be discussed in more detail here. Hops are con-
structed to export an extra interface solely to a controller
that is used to manage forwarding, which is done through
application of mappings in forwarding tables between packet
header fields and actions that are taken upon encounters of
matching packets. Header parts to be matched can be part of
standard protocols that are widely used today, like IP or the
Transmission Control Protocol (TCP) and the User Datagram
Protocol (UDP). Actions are i.e. sending a packet to a specific
port or rewriting its protocol header data.

This architectural design has several advantages. The net-
work operator controls the hardware from a single point
and rolls out new setups and changes by programming the
network’s controller, instead of programming every single
hardware instance manually. The flexibility of SDN to col-
lectively control the data flows via forwarding table entries
can be used to implement requirements such as an isolation of
different networks.
However, SDN design has also a few disadvantages. SDN
in the OpenFlow implementation does not simplify network
hardware. The flow table matching to apply rules provided
by the controller still requires to parse all headers, which is
simpler in the MPLS approach. If external network protocols
change (i.e. IPv4 to IPv6), also the matching behavior in a
SDN has to be changed, to keep on working. This is due to
the fact that header informations and matching rules are no
longer fitting, which can be improved by a MPLS approach
on top. With it, only the network edge has to be updated, to
switch the network back to a working state.

Header Fields Counters Actions

TABLE I. REQUIRED FIELDS FOR A FLOW TABLE ENTRY [1].

In Ethernet VLAN IP TCP/UDP
Port SA DA Type ID SA DA Proto SRC DST

TABLE II. THE HEADER FIELDS THAT ARE MATCHED IN AN
OPENFLOW SWITCH [1].

A. OpenFlow

McKeown et al. [1] describe, how they enable innovation in
campus networks, using the OpenFlow specification. The inspi-
ration for OpenFlow was the identification of a common set of
functions that are implemented by several routers and switches.
Thus, this open protocol allows network administrators to
partition traffic into different flows, since the functionality is
transparent to the operator of the network.

Like depicted in Table I, each flow table consists of three
fields. A packet header that defines the flow, an action, which
defines how packets should be processed and statistics. The
latter are counters that keep track of the number of packets
and bytes for each flow and the time since the last packet
matched the flow, mainly to help with the removal of inactive
flows. For the matching procedure the header fields of Table II
are concerned. The data path of an OpenFlow Switch presents
a clean flow table abstraction; each flow table entry contains
a set of packet fields to match and an action (such as send-
out-port, modify-field, or drop). When an OpenFlow Switch
receives a packet it has never seen before, for which it has no
matching flow entry, it sends this packet to the controller. The
controller then decides on how to handle this packet. It can
drop the packet or it can add a flow entry directing the switch
on how to forward similar packets in the future.

A controller is attached to the network via a separate
secure channel, like Figure 2 shows. There exist several
implementations of such controllers. A first implementation
of an OpenFlow controller is NOX [9], which is written in
C++ and Python. A purely C implementation that has a multi-
threaded infrastructure at its core is MūL [10]. It is designed
for performance and reliability, which is needed from the
beginning of the deployment in mission-critical networks. The
ovs-controller [11] is a trivial reference controller that comes
packaged with Open vSwitch [3]. A variation to use Ruby
is given with Trema [12], which is a full-stack framework
for developing OpenFlow controllers in Ruby and C. POX
[9] as a successor of NOX is a high-level SDN API, since
it is programmed in Python and therefore platform indepen-
dent. POX offers a queriable topology graph and support for
virtualization. Another Python based approach is Ryu [13],
which is an open-source Network Operating System (NOS)
that supports OpenFlow. Finally, some Java controllers are
missing. Jaxon [14] depends on NOX and is not platform
independent at all. Maestro [15] is capable to orchestrate
network control applications. Beacon [16] supports event-
based and threaded operations. Originally, the Apache-licensed
OpenFlow controller Floodlight [17] was forked from the Bea-
con controller. It is supported and improved by a community
of developers and it supports a broad range of virtual and
physical OpenFlow switches. It is chosen for controlling our
networks in Section III. Furthermore, with NodeFlow there are

JavaScript approaches to implement an OpenFlow controller
for Node.JS [18].

Besides of the listed controllers, there are also special
purpose controllers. RouteFlow [19], e.g., is an open source
project to provide virtualized IP routing services for Open-
Flow enabled hardware, which is mainly written in C++ and
Python. RouteFlow is composed of an OpenFlow controller
application, an independent RouteFlow server and a virtual
network environment that reproduces the connectivity of a
physical infrastructure and runs IP routing engines. For us-
ing multiple OpenFlow controllers Flowvisor [20] acts as a
transparent proxy. Simple network access control (SNAC) [21]
is an OpenFlow controller built on NOX, which uses a web-
based policy manager to manage the network. Oflops [22] is
a standard controller that benchmarks various aspects of an
OpenFlow Switch.

There are options available, but none so far was able to
satisfy the needs to prototype networks. Hardware-based setups
were too expensive and thus lacked flexibility, scalability,
shareability and affordability. Prior software-based solutions
like a network of virtual machines lacked scalability due to
being too heavyweight and overly resource intense and so
lacked also shareablity. Software testbeds had a mismatch
with simulation code not being deployable and also lacked
interactivity. Other approaches tried to fix the shortcomings
with distributed testbeds, thus being able to support large
topologies and also making these shareable. Still having a
solution to run on only a single workstation would further fix
scalability, shareability and affordability for people not having
access to these test networks. With the advent of SDN another
solution arose, called Mininet. It promises to satisfy all the
above needs at once using SDN technology. Evaluation of this
claim will be done in Section IV.

B. Mininet

For prototyping networks further requirements need to be
fulfilled. To increase flexibility, topologies should be defined
software-wise and not on a hardware level, which would
reduce costs during the setup and development time. Network
designs created on the software level should be deployable
on actual hardware without having to alter code or configura-
tions. Interactivity is given by running, managing and testing
designs in real-time. Scalability is needed to depict real-world
networks, where a single workstation simulates networks with
hundreds of nodes, if not thousands. In a testbed protocols
and characteristics of networks should be expressed as close
as possible to deployed network instances in a productive
environment. Network designs should be shareable between
collaborators without complicated setups and configurations.
Testbeds should be cheap enough, to be affordable for people
needing those, either in academia or at work in companies.

The magic behind Mininet’s illusion is a set of features
built into Linux that allow a single system to be split into a
bunch of smaller containers, each with a fixed share of the
processing power, combined with virtual link code that allows
links with accurate delays and speeds. Internally, Mininet
employs lightweight virtualization features in the Linux ker-
nel, including process groups, CPU bandwidth isolation, and
network namespaces, and combines them with link schedulers

Kernel Space

root network
namespace

vswitch

vswitch

vswitch
Isolated links

e.g. 100mbps, 2ms

virtual ethernet pairs

Linux server
User Space

M
on

ito
ri

ng
to

ol
s

vhost
(container)

process 3

private network
namespace

vhost
(container)

process 1
process 2

private network
namespace

Isolated hosts
(e.g. 20% CPU)

vhost
(container)

process 4

private network
namespace

Fig. 3. Container based emulation in Mininet based on different namespaces.
Every vhost is a container, which provides its own private network namespace
and is participating in the network with a connection to a virtual switch [23].

and virtual Ethernet links. These features yield a system that
starts faster and scales to more hosts than emulators, which
are based on full virtual machines. For example, 1, 057 nodes
allocate 492MB of memory and start up at about 817s [4].
Therefore, a Mininet network consists of three elements [23],
as depicted in Figure 3.

• Virtual hosts, which are a group of user-level processes
moved into a network namespace. Network names-
paces themselves are containers for the network state
and provide process groups with exclusive ownership
interfaces, ports and routing tables. For example, two
web servers in two network namespaces can coexist
on one system, both listening to private Ethernet inter-
faces on the same port. To guarantee fairness, Mininet
limits the processor bandwidth for each process group
to a fraction of the CPU time available.

• Virtual switches that typically use the default Linux
bridge or Open vSwitch are running in kernel mode to
switch packets across interfaces. Moreover, switches
and routers may run in the kernel space to speed up
the packet switching or in the user space to modify
them easily.

• Isolated links are defined with an explicit data rate,
which is enforced by Linux traffic control that consists
of several packet schedulers to shape traffic to a
configured rate. A virtual Ethernet pair acts like a
wire connecting two virtual interfaces or virtual switch
ports. Packets sent through one interface are delivered
to the other and each interface appears as a fully
functional Ethernet port to all system and application
software.

III. TOPOLOGIES IN MININET

The SDN emulator from Subsection II-B needs topologies
that are defined in Python for its execution. Though, the ITZ,
from Subsection III-A, provides a database with many real-
world topologies, they are defined in a graphical notation. To

Fig. 4. DFN network topology that was published in January 2011. All
routers/switches of the topology are depicted as black circles, while the links
are painted in blue lines.

make them available in Mininet version 2.0.0, a possibility is
to use the topology parser from Subsection III-B.

A. The Internet Topology Zoo

The ITZ [5] is a store for data of network topologies.
A lot of attention was given through the study of network
topologies, but it stagnated by a lack of accurate data. Methods
for measuring topologies have flaws, such that all arguments
circled around the methods and have overcome the important
questions about network structures. Since operators publish
information about their networks, the ITZ database contains
topologies from AboveNet to Zamren. Therefore, the ITZ is the
most accurate collection of networks that is publicly available
and includes meta data, which is not measurable. In our
examples of Subsection III-B we use the German research
network (DFN1) topology as depicted in Figure 4.

All topologies are in a graphical format that uses the
extensible markup language (XML) as description basis. Va-
lidity of each topology in the GraphML format is given
by the XML schema definition (XSD) for GraphML2 files.
The graphical format provides enough information to build
up testbed networks with respect to real world topologies.
Listing 1 depicts the important elements to structure the
network. To identify, which purpose the key elements are used
for, the attr.name field contains the relevant information.
Here, especially the label for a node and its longitude and
latitude positions are needed to rebuild the network in Mininet.
Moreover, the edge element specifies the connections between
the nodes and is needed to link the switches in Mininet.

1”Deutsches Forschungsnetz”
2http://graphml.graphdrawing.org/xmlns

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<graphml . . .>

<key a t t r . name=” key ” a t t r . t y p e =” i n t ” f o r
=” edge ” i d =” d36 ” />

. . .
<graph e d g e d e f a u l t =” u n d i r e c t e d ”>

<data key=” d0 ”>2 / 0 1 / 1 1< / data>
<data key=” d1 ”>Germany< / data>
<data key=” d2 ”>Count ry< / data>
<data key=” d3 ”>DFN< / data>
. . .
<data key=” d28 ”>1< / data>
<node i d =” 0 ”>

<data key=” d29 ”>1< / data>
<data key=” d30 ”>50 .83333< / data>
<data key=” d31 ”>Germany< / data>
<data key=” d32 ”>0< / data>
<data key=” d33 ”>12 .91667< / data>
<data key=” d34 ”>CHE< / data>

< / node>
. . .
<edge s o u r c e =” 0 ” t a r g e t =” 1 ”>

<data key=” d35 ”>e52< / data>
<data key=” d36 ”>0< / data>

< / edge>
. . .

< / graph>
< / graphml>

Listing 1. Selection of important values of the graphml format for the DFN
topology depicted in Figure 4.

! / u s r / b i n / py thon

from m i n i n e t . t opo import Topo
. . .

c l a s s Genera tedTopo (Topo) :
def i n i t (s e l f , ∗∗ o p t s) :

I n i t i a l i z e Topology
Topo . i n i t (s e l f , ∗∗ o p t s)
s w i t c h e s f i r s t
CHE = s e l f . addSwi tch (’ s0 ’)
. . .
and now h o s t s
CHE host = s e l f . addHost (’ h0 ’)
. . .
add edges between s w i t c h and

c o r r e s p o n d i n g h o s t
s e l f . addLink (CHE , CHE host)
. . .
add edges between s w i t c h e s
s e l f . addLink (CHE , LEI , bw=10 ,

d e l a y = ’ 0 .348009502ms ’)
. . .

t o p o s = { ’ g e n e r a t e d ’ : (lambda :
Genera tedTopo ()) }

. . .
i f name == ’ main ’ :

s shd (se tupNe twork ())

Listing 2. The transformation of Listing 1 to Python for establishing the
topology in Mininet.

B. The Topology Generator for Mininet

Since all topologies available in the ITZ have a quite
similar structure, parsing them to generate executable Mininet
topologies is possible with ease. Topologies to be used in
Mininet are executable/loadable Python classes interfacing
with the Mininet API. So each usable Mininet topology is
similar, having the same content in the head and the tail of a
file. The parts, where the files basically differ is the definition
of

• host entries,

• switch entries and

• links between switches and hosts.

The difference between executable and loadable files is in the
code at the end of the Python script. If the topology is executed
from a Linux shell, Mininet is automatically started with the
topology defined and secure shell (SSH) access available.
Loaded means that Mininet was started alone from the Linux
shell and the topology was given as a calling argument via
the topo parameter. The code that defines SSH access to the
topology nodes is not executed, only the part defining that the
topology is used. In return this means using the topology just
by loading SSH access is not available. So the preferred usage
is to directly execute the topology from a Linux shell. There are
several command line arguments available for using the ITZ
Parser. Through them you can define a GraphML input file for
the topology that should be parsed to a Python topology that

Mininet can use. An adjustment of the bandwidth in Mbps is
also possible by setting the bw value of all edges to the given
value. Further, the parser requires the files to be located in the
same directory and without specifying input parameters the
program will terminate. However, some values can be omitted,
like the bandwidth limitation, which is otherwise initialized to
10Mbps. If omitted, the remote controller IP is initialized with
”10.0.2.2”, which is the standard IP for the host OS when using
Oracle Virtualbox for virtualization. Additionally, the delay for
Mininet is calculated by using the geographical coordinates of
the ITZ topologies.

dist(SP,EP) = arccos{sin (LaEP) · sin (LaSP)+

cos (LaEP) · cos (LaSP) · cos (LoEP − LoSP)} · r
(1)

In the topology distances are calculated by the spherical
law of cosines that is described by Equation 1, where the radius
is assumed about r = 6, 378, 137m. SP is the starting point,
while EP describes the end point. La is the latitude value
and Lo the longitude value of a geo-coordinate, which must
be given as radian values [24].

tL =
dist(SP,EP)

vL
(2)

Moreover, the signal speed is approximated with the speed
of light and the reflective factor of 1.52 for optical fiber, such

ITGSend ITGRecv

ITGLog

ITGManager Data Channel
Log Channel
Signaling Channel

Fig. 5. The architecture of the D-ITG traffic generation. Every module
is connected through several communication channels to other modules.
ITGSend performs the traffic generation and sending processes, while
ITGRecv receives it. ITGLog is a storage to collect all log files, while
ITGManager is used for the remote control [6].

that vL = 3·108
1.52

m
s = 1.97·108m

s [25]. Therefore, the estimated
latency time tL is calculated by Equation 2.

For example, Listing 1 provides in the fields d30 the
latitude and in d33 the longitude value of a geolocation, such
that we can determine the delay between two points from this
graphical format. First, we extract the geocoordinates for CHE,
which are LaCHE = 50.83333◦ and LoCHE = 12.91667◦. The
connection is built up to LEI with LaLEI = 51.33962◦ and
LoLEI = 12.37129◦. The distance between CHE and LEI
is calculated by Equation 1, such that dist(CHE,LEI) =
68557.871953m. In the same way the delay is calculated by
Equation 2, such that tL = 68557.871953m

1.97·105 m
ms

= 0.348009502ms.
The latency is written into the python script of Listing 2 for
initializing the edge between CHE and LEI.

IV. EVALUATION SUITE FOR MININET

The evaluation of Mininet topologies is another concern.
After being able to establish all topologies of the ITZ, the
evaluation of several metrics needs to be concerned. For
traffic generation, we use the D-ITG in Subsection IV-A and
finally a few trials are performed with a Mininet topology in
Subsection IV-B.

A. Distributed Internet Traffic Generator

To evaluate the performance of Mininet D-ITG in version
2.8.0-rc1 was used: ”Distributed Internet Traffic Generator (D-
ITG) is a platform capable to produce traffic that accurately
adheres to patterns defined by the inter departure time between
packets (IDT) and the packet size (PS) stochastic processes”
[6]. Therefore, it offers a rich variety of probability distribu-
tions for the traffic generation and uses some models proposed
to emulate sources of various protocols. With it, it is possible
to generate various packet streams and collect statistics with
a logging server. In Figure 5 all important modules of the
D-ITG are depicted. The ITGSend module is responsible
for the traffic generation, while the ITGRecv module is
the sink for the packets, which are delivered over a Data
Channel. To collect logging information both, the ITGSend
and ITGRecv are communicating via a Log Channel with the
ITGLog module. For remote control the ITGManager offers
the functionalities to adjust parameters of ITGSend through the
Signaling Channel.

Besides the modules of Figure 5 the D-ITG decoder
(ITGDec) analyzes the results collected by the ITGLog
module. It calculates the packet loss, throughput, jitter and
delay, both the one-way delay (OWD) and the round-trip time

Receiver 1

S6

S5S4

S3S2

S1

Receiver 2

Sender 1

Sender 2

Log server

Fig. 6. The topology for the measurement trials. S1 to S6 are the switches
in the topology, while Sender/Receiver denote the hosts that are handling
generated traffic. Besides, the log server collects the relevant statistical data
of the hosts. S4 is shutdown for a few measurement trials.

(RTT). Moreover, it can analyze log information in real-time,
e.g., if the sender is instructed by a controller entity to adapt
the transmission rate based on channel congestion and receiver
capacity.

B. Measurement Trials

Figure 6 depicts the topology of our measurement trials. S1
to S6 are the switches in the topology, while Sender/Receiver
denote the hosts that are handling generated traffic. On each
sender a ITGSend process is called to generate the traffic,
while on each receiver ITGRecv handles the receipt of the
packets. Besides, the log server collects the relevant statistical
data of the hosts by running an instance of ITGLog. S4 is
shutdown for a few measurement trials and therefore all dashed
links are unavailable. To sum up, in total we performed four
trials, each for TCP and UDP with a duration of one minute
for each trial in the following setups:

1) Only Sender 1 and Receiver 1 are responsible for the
traffic on the topology without switch S4.

2) Sender 1 and Receiver 1 are handling the traffic on
the full topology.

3) Both sender/receiver pairs are responsible for the
traffic without switch S4.

4) Both sender/receiver pairs are handling the traffic on
the full topology.

C. Results

The Mininet [4] virtual machine was running on a HP
Proliant DL380p Gen8 server with Vmware3 virtualization,
while the Floodlight controller [17] is executed on a standard
computer. For the trials the bandwidth of the SDN hops is
limited to 10Mbps. In D-ITG the traffic generation through
ITGSend is setup with the maximum payload size for one
packet, such that the traffic rate is adjusted by varying the
IDT of two consecutive packets. The test bitrates reach from
8Mbps to 12Mbps in steps of 0.5Mbps. For probing nine
different bitrates a trial for one protocol and one setup has a
duration of nine minutes. Therefore, it takes 18 minutes for
two protocols and 72 minutes for the complete trial.

3http://www.vmware.com

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18
Throughput

time [s]

[M
b

p
s
]

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

Delay

time [s]

[m
s
]

0 10 20 30 40 50 60

−8

−6

−4

−2

0

2

4

6

8

x 10
−3 Jitter

time [s]

[m
s
]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
x 10

4 Inter−departure time Distribution

time [s]

E
m

p
ir
ic

a
l
P

D
F

(a) Traffic generation over TCP

0 10 20 30 40 50 60
0

2

4

6

8

10

Throughput

time [s]

[M
b

p
s
]

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

Delay

time [s]

[m
s
]

0 10 20 30 40 50 60

−3

−2

−1

0

1

2

3

4

x 10
−3 Jitter

time [s]

[m
s
]

0 0.02 0.04 0.06 0.08
0

1

2

3

4

5
x 10

4 Inter−departure time Distribution

time [s]

E
m

p
ir
ic

a
l
P

D
F

(b) Traffic generation over UDP

Fig. 7. Evaluation of traffic with a constant test bitrate of 10Mbps. Compared to Figure 6 the trial is setup with Sender/Receiver pair 1 and without switch
S4. The delay within the edges of the SDN topology is 1ms.

0 10 20 30 40 50 60
0

5

10

15

20

Throughput

time [s]

[M
b

p
s
]

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Delay

time [s]

[m
s
]

0 10 20 30 40 50 60

−1

−0.5

0

0.5

1

1.5

2

x 10
−3 Jitter

time [s]

[m
s
]

−0.2 −0.1 0 0.1 0.2
0

2

4

6

8

10
x 10

4 Inter−departure time Distribution

time [s]

E
m

p
ir
ic

a
l
P

D
F

(a) Traffic generation over TCP

0 10 20 30 40 50 60
0

5

10

15

20

Throughput

time [s]

[M
b

p
s
]

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

Delay

time [s]

[m
s
]

0 10 20 30 40 50 60

−1

−0.5

0

0.5

1

1.5

x 10
−3 Jitter

time [s]

[m
s
]

−0.3 −0.2 −0.1 0 0.1 0.2
0

2

4

6

8

10
x 10

4 Inter−departure time Distribution

time [s]

E
m

p
ir
ic

a
l
P

D
F

(b) Traffic generation over UDP

Fig. 8. Evaluation of traffic with a constant test bitrate of 10Mbps for each sender. Compared to Figure 6 the trial is setup with both Sender/Receiver pairs
generating traffic to all switches of the topology. The delay within the edges of the SDN topology is 1ms.

The D-ITG decoder provides data files that can be analyzed
with MatLab [26]. Initially, every trial is evaluated and plotted
as shown in Figure 7 and 8. In the plots, the first three graphs
show specific characteristics in the time sequence from 0s to
60s. In more detail, the upper left plot depicts the throughput
in Mbps, while the upper right shows the delay in ms. The
lower left plot is evaluating the jitter value in ms. It is
calculated according to RFC 4689 [27], where D expresses the
forwarding delay and i the order of the packets (Equation 3).
The delay is further calculated by Equation 4, where S is the

send time of a packet and R the receive time.

AvgJitter =

∑n
i−1 |Di −Di−1|

n
(3)

Di = Ri − Si (4)

The lower right graph depicts the distribution of the inter-
departure times (IDT).

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

4

6

8

10

12

14

mean throughput with standard deviation

test bitrate [Mbps]
b
it
ra

te
 v

a
lu

e
 [
M

b
p
s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
−1

−0.5

0

0.5

1
mean delay with standard deviation

test bitrate [Mbps]

d
e
la

y
 v

a
lu

e
 [
m

s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
−5

0

5

x 10
−3 mean jitter with standard deviation

test bitrate [Mbps]

jit
te

r
v
a
lu

e
 [
m

s
]

(a) Sender S1

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

7

8

9

10

mean throughput with standard deviation

test bitrate [Mbps]

b
it
ra

te
 v

a
lu

e
 [
M

b
p
s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
−1

0

1

2

3
mean delay with standard deviation

test bitrate [Mbps]

d
e
la

y
 v

a
lu

e
 [
m

s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

0.5

1

1.5

2

x 10
−3 mean jitter with standard deviation

test bitrate [Mbps]

jit
te

r
v
a
lu

e
 [
m

s
]

(b) Receiver R1

Fig. 9. Evaluation of UDP by increasing the test bitrate of the generated traffic. Compared to Figure 6 the trial is setup with one Sender/Receiver pair and without switch S4 and the constant bitrates are
increased from 8Mbps to 12Mbps. Each plot depicts the mean value and the corresponding standard deviation expressed through two bars. The first graph plots the throughput in Mbps, the second graph
the delay in ms and the third graph the jitter value in ms.

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

15

20

25

mean throughput with standard deviation

test bitrate [Mbps]

b
it
ra

te
 v

a
lu

e
 [
M

b
p
s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
−1

−0.5

0

0.5

1
mean delay with standard deviation

test bitrate [Mbps]

d
e
la

y
 v

a
lu

e
 [
m

s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

1

1.2

1.4

1.6

x 10
−3 mean jitter with standard deviation

test bitrate [Mbps]

jit
te

r
v
a
lu

e
 [
m

s
]

(a) Sender S1 and S2

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

14

16

18

20

mean throughput with standard deviation

test bitrate [Mbps]

b
it
ra

te
 v

a
lu

e
 [
M

b
p
s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
−1

0

1

2

3
mean delay with standard deviation

test bitrate [Mbps]

d
e
la

y
 v

a
lu

e
 [
m

s
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
0.8

1

1.2

1.4

1.6

1.8

x 10
−3 mean jitter with standard deviation

test bitrate [Mbps]

jit
te

r
v
a
lu

e
 [
m

s
]

(b) Receiver R1 and R2

Fig. 10. Evaluation of UDP by increasing the test bitrate of the generated traffic. Compared to Figure 6 the trial is setup with one Sender/Receiver pair and the constant bitrates are increased from 8Mbps
to 12Mbps. Each plot depicts the mean value and the corresponding standard deviation expressed through two bars. The first graph plots the throughput in Mbps, the second graph the delay in ms and the
third graph the jitter value in ms.

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Packet loss

time [s]

[p
p
s
]

(a) Evaluation of packet loss with a
constant test bitrate of 9Mbps

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

Packet loss

time [s]

[p
p
s
]

(b) Evaluation of packet loss with a
constant test bitrate of 10Mbps

Fig. 11. Evaluation of packet loss of the topology of Figure 6, which is
setup with Sender/Receiver pair 1 and without switch S4. The delay within
the edges of the SDN topology is 1ms and the bandwidth limitation of the
SDN switches is 10Mbps.

In Figure 7 the trial runs on the topology with sender/re-
ceiver pair 1 and without switch S4. We observe that the
topology performs with a received throughput of about 9Mbps
for the TCP (Figure 7a) traffic and nearly 10Mbps for the UDP
(Figure 7b) traffic. Moreover, the TCP congestion control is
clearly visible in the delay plot of Figure 7b and tries to find
the threshold above 20s. Furthermore, on the receiver side,
depicted in Figure 7a and 7b we observe a linear increase of
the delay to a certain threshold, which is about 1.2ms for
UDP, though the sender is not responsible for this behavior.
In comparison to the UDP loss graphs of Figure 11 the
achievement of the 1.2ms delay of Figure 7b occurs at 10s,
which is the same time when Figure 11b shows the first packet
loss in packets per second pps. Nevertheless, avoiding the
threshold shows that all packets are transmitted, e.g., with a
bitrate of 9Mbps (Figure 11a).
In Figure 8 the trial runs on the full topology with both
sender/receiver pairs. A similar observation occurs again,
while both senders generate traffic with a throughput of
10Mbps each, the total amount of the received bitrate is about
18.5Mbps for TCP (Figure 8a) and nearly 20Mbps UDP
(Figure 8b). Again, the delay shows a linear increase for the
UDP scenario, while there occurs a heavily oscillating increase
in the TCP scenario, which is probably caused by overlapping
congestions control mechanisms of the cross traffic generation.
The IDT distribution depicts negative times which probably
occur, when one hops, e.g., S2 is fully utilized such that
the traffic flow from Sender 1 to Receiver 1 is using S3 for
the following transmissions. Packets over the new route arrive
faster than their predecessors on the old route, which produce
negative results in the IDT.

Figure 9 and 10 collect the statistics for several trials in
one graph. Therefore, the mean value and the corresponding
standard deviation are calculated over the time schedules of
the uppermost three graphs of Figure 7 and Figure 8. This
values are plotted for different test bitrates reaching from
8Mbps to 12Mbps. The first graph, the uppermost, depicts
the throughput in Mbps, the second one the delay in ms and
the third the jitter value in ms.

The sender always generates the constant test bitrate in
every case of the performed measurements, without introduc-
ing additional delay (Figure 9a and Figure 10a), though the
variance of the throughput generation is increasing by reaching

the threshold. In Figure 9, running the trial of sender/receiver
pair 1 without switch S4, we observe at the receiver side,
Figure 9b, an increase of the throughput until the threshold
of 10Mbps is achieved. The delay graph expresses a similar
behavior until the bitrate achieves 10Mbps. Later on the
mean value of the delay converges to 1.2ms. Within reaching
10Mbps the standard deviation is increasing and holds a
similar level thereafter, while the mean value for the received
throughput remains a bit below the bandwidth limitations.

In the trial with cross-traffic over the full topology, we
observer that the throughput is steadily increasing until it
achieves 10Mbps for both flows in Figure 10. For example,
when both senders generate traffic with a constant bitrate of
10Mbps each, the overall received throughput is estimated
with about 18.5Mbps. There is no delay until the flows reach
the threshold and thereafter it converges to 1.1ms. In the jitter
plot it is obvious that the more the bitrate increases the lower
the mean value of the jitter will be due to the fact that packets
are processed with nearly the same IDTs after the threshold.

V. CONCLUSION & FUTURE WORK

With the Internet Topology Zoo parser we lay the foun-
dation to evaluate real-world network topologies in a SDN
emulator. Furthermore, you are now able to specify networks
in the GraphML syntax and simply migrate them to Mininet,
without touching Python code. The simplicity to parse nearly
every network to your own laptop reveals new possibilities
to test several aspects of SDN behavior. For example, the
controller placement problem described by Heller et al. [28]
could be further analyzed with real-world or self-defined
topologies. Additionally, the test suite, which is enabled with
SSH access to all hosts, provides the ability to use traffic
generation engines to evaluate network behavior to a certain
extent. Here, the monitoring of SDNs can be tested in a
scale-able environment that represents real-world topologies.
According to the SDN open source initiatives, the topology
parser and all results of the measurement trials will be made
publicly available4. With the usage of D-ITG, we evaluated
an exemplary topology, which was controlled by Floodlight.
Our first measurement trial reveals that Mininet performs as
expected within a given range of selected bitrates. In future
experiments the network size needs to be increased, especially
through using topologies of the ITZ, to evaluate, how many
nodes Mininet can handle with acceptable performance. Basi-
cally, the SSH access is the foundation to push test modules
onto the SDN, which is established within the usage of the ITZ
parser. Furthermore, evaluations of different controllers could
reveal their application area.

ACKNOWLEDGMENT

The authors would like to thank Walter de Donato for his
kind support with the D-ITG framework, especially with the
D-ITG decoder.

4The topology generator, the D-ITG automation for Mininet
and the results of the measurement trials are available at
http://141.13.92.69/index.php/projects/auto-mininet

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[2] Open Networking Foundation (ONF), “Sotware-defined networking:
The new norm for networks,” Tech. Rep., April 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf

[3] “Open vSwitch,” May 2013. [Online]. Available: http://openvswitch.org

[4] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
ser. Hotnets-IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.
[Online]. Available: http://doi.acm.org/10.1145/1868447.1868466

[5] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[6] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-
ITG distributed Internet traffic generator,” in Proceedings of the First
International Conference on the Quantitative Evaluation of Systems.
QEST 2004., 2004, pp. 316–317.

[7] Z. Ren, C.-K. Tham, C.-C. Foo, and C.-C. Ko, “Integration of mobile IP
and multi-protocol label switching,” in IEEE International Conference
on Communications, vol. 7, 2001, pp. 2123–2127.

[8] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” in Proceedings
of the 2007 Conference on Applications, technologies, architectures,
and protocols for computer communications, ser. SIGCOMM ’07.
New York, NY, USA: ACM, 2007, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1282380.1282382

[9] “Noxrepo.org,” May 2013. [Online]. Available: http://www.noxrepo.org

[10] “Mul,” May 2013. [Online]. Available: http://sourceforge.net/projects/
mul

[11] “ovs-controller,” May 2013. [Online]. Available: http://openvswitch.
org/cgi-bin/ovsman.cgi?page=utilities%2Fovs-controller.8

[12] “Trema: Full-Stack OpenFlow Framework in Ruby and C,” May 2013.
[Online]. Available: http://trema.github.io/trema

[13] “Ryu: Python-based OpenFlow controller but we aim for bigger
pictures,” May 2013. [Online]. Available: http://osrg.github.io/ryu

[14] “Jaxon: Java-based openFlow Controller,” May 2013. [Online].
Available: http://jaxon.onuos.org

[15] “Maestro-platform: A scalable control platform written in Java
which supports OpenFlow switches,” May 2013. [Online]. Available:
https://code.google.com/p/maestro-platform

[16] “Beacon,” May 2013. [Online]. Available: https://openflow.stanford.
edu/display/Beacon/Home

[17] “Project floodlight,” May 2013. [Online]. Available: http://www.
projectfloodlight.org/floodlight

[18] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-
performance network programs,” Internet Computing, IEEE, vol. 14,
no. 6, pp. 80–83, 2010.

[19] “RouteFlow,” May 2013. [Online]. Available: https://sites.google.com/
site/routeflow/

[20] “Flowvisor,” May 2013. [Online]. Available: https://github.com/
OPENNETWORKINGLAB/flowvisor/wiki

[21] “Simple network access control (SNAC),” May 2013. [Online].
Available: http://www.openflow.org/wp/snac/

[22] “Oflops,” May 2013. [Online]. Available: http://www.openflow.org/wk/
index.php/Oflops

[23] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international Conference on Emerging
networking experiments and technologies, ser. CoNEXT ’12. New
York, NY, USA: ACM, 2012, pp. 253–264. [Online]. Available:
http://doi.acm.org/10.1145/2413176.2413206

[24] P. Eittenberger, M. Großmann, and U. Krieger, “Doubtless in Seattle:
Exploring the Internet Delay Space,” in 8th EURO-NGI Conference on
Next Generation Internet (NGI), 2012, pp. 149–155.

[25] E. Hecht, Optics (4th Edition). Addison-Wesley, 2001.
[26] “Matlab,” May 2013. [Online]. Available: http://www.mathworks.de/

products/matlab
[27] S. Poretsky, J. Perser, S. Erramilli, and S. Khurana, “Terminology for

Benchmarking Network-layer Traffic Control Mechanisms,” RFC 4689
(Informational), Internet Engineering Task Force, Oct. 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4689.txt

[28] B. Heller, R. Sherwood, and N. McKeown, “The controller
placement problem,” in Proceedings of the first workshop on
Hot topics in software defined networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342444

http://doi.acm.org/10.1145/1355734.1355746
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://openvswitch.org
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1282380.1282382
http://www.noxrepo.org
http://sourceforge.net/projects/mul
http://sourceforge.net/projects/mul
http://openvswitch.org/cgi-bin/ovsman.cgi?page=utilities%2Fovs-controller.8
http://openvswitch.org/cgi-bin/ovsman.cgi?page=utilities%2Fovs-controller.8
http://trema.github.io/trema
http://osrg.github.io/ryu
http://jaxon.onuos.org
https://code.google.com/p/maestro-platform
https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
http://www.projectfloodlight.org/floodlight
http://www.projectfloodlight.org/floodlight
https://sites.google.com/site/routeflow/
https://sites.google.com/site/routeflow/
https://github.com/OPENNETWORKINGLAB/flowvisor/wiki
https://github.com/OPENNETWORKINGLAB/flowvisor/wiki
http://www.openflow.org/wp/snac/
http://www.openflow.org/wk/index.php/Oflops
http://www.openflow.org/wk/index.php/Oflops
http://doi.acm.org/10.1145/2413176.2413206
http://www.mathworks.de/products/matlab
http://www.mathworks.de/products/matlab
http://www.ietf.org/rfc/rfc4689.txt
http://doi.acm.org/10.1145/2342441.2342444

	Introduction
	Software-Defined Networking
	OpenFlow
	Mininet

	Topologies in Mininet
	The Internet Topology Zoo
	The Topology Generator for Mininet

	Evaluation Suite for Mininet
	Distributed Internet Traffic Generator
	Measurement Trials
	Results

	Conclusion & Future Work
	References

